ABURADA Kentaro

写真a

Affiliation

Engineering educational research section Information and Communication Technology Program 

Title

Professor

External Link

 

Papers 【 display / non-display

  • Optimal Weighted Voting-Based Collaborated Malware Detection for Zero-Day Malware: A Case Study on VirusTotal and MalwareBazaar Reviewed

    Okazaki N., Usuzaki S., Waki T., Kawagoe H., Park M., Yamaba H., Aburada K.

    Future Internet   16 ( 8 )   2024.8

     More details

    Authorship:Last author   Publishing type:Research paper (scientific journal)   Publisher:Future Internet  

    We propose a detection system incorporating a weighted voting mechanism that reflects the vote’s reliability based on the accuracy of each detector’s examination, which overcomes the problem of cooperative detection. Collaborative malware detection is an effective strategy against zero-day attacks compared to one using only a single detector because the strategy might pick up attacks that a single detector overlooked. However, cooperative detection is still ineffective if most anti-virus engines lack sufficient intelligence to detect zero-day malware. Most collaborative methods rely on majority voting, which prioritizes the quantity of votes rather than the quality of those votes. Therefore, our study investigated the zero-day malware detection accuracy of the collaborative system that optimally rates their weight of votes based on their malware categories of expertise of each anti-virus engine. We implemented the prototype system with the VirusTotal API and evaluated the system using real malware registered in MalwareBazaar. To evaluate the effectiveness of zero-day malware detection, we measured recall using the inspection results on the same day the malware was registered in the MalwareBazaar repository. Through experiments, we confirmed that the proposed system can suppress the false negatives of uniformly weighted voting and improve detection accuracy against new types of malware.

    DOI: 10.3390/fi16080259

    Scopus

  • Usability improvement in color constancy CAPTCHA

    Usuzaki Shotaro, Yihan Wang, Aburada Kentaro, Yamaba Hisaaki, Takatsuka Kayoko, Katayama Tetsuro, Park Mirang, Okazaki Naonobu

    IEICE Communications Express   13 ( 8 )   331 - 334   2024.8

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:一般社団法人 電子情報通信学会  

    CAPTCHAs have traditionally been used to deter bots, but ensuring protection against machine learning attacks has become difficult. To tackle this problem, we proposed a CAPTCHA based on color constancy, a human cognitive ability that is difficult for machines to reproduce. Although this method achieved high attack resistance while maintaining usability compared to existing CAPTCHAs, the response time increased due to the color selection operation. To address this, we changed the task to a click-type format while keeping the original concept. Our experimental results show that our method matches the response times of existing CAPTCHAs without compromising attack resistance.

    DOI: 10.23919/comex.2024xbl0052

    CiNii Research

  • 反射成分が含まれる画像におけるプライバシーリスク検出手法の検討

    臼﨑翔太郎,油田健太郎,山場久昭,岡崎直宣

    情報処理学会 第87回全国大会   1 - 8   2025.3

     More details

    Publishing type:Research paper (conference, symposium, etc.)  

  • 視覚の補完機能を利用した文字型CAPTCHAの一検討

    西秀峻, 鎌田大貴, 臼崎翔太郎, 油田健太郎, 山場久昭, 朴美娘, 岡崎直宣

    火の国情報シンポジウム2025   1 - 6   2025.3

     More details

    Authorship:Corresponding author   Publishing type:Research paper (conference, symposium, etc.)  

  • IoTマルウェア検知精度向上のためのパラメータに応じたOne-Class SVMの性能調査

    川越彪雅, 高崎球宇我, 臼崎翔太郎, 油田健太郎, 山場久昭, 朴美娘, 岡崎直宣

    火の国情報シンポジウム2025   1 - 7   2025.3

     More details

    Authorship:Corresponding author   Publishing type:Research paper (conference, symposium, etc.)  

display all >>

Books 【 display / non-display

  • コンピュータネットワーク概論 第2版

    水野 忠則 , 中村 嘉隆, 田 学軍, 清原 良三, 石原 進, 久保田 真一郎, 岡崎 直宣, 太田 賢 (通信工学), 稲村 浩, 舟阪 淳一, 油田 健太郎( Role: Sole author)

    共立出版  2024  ( ISBN:9784320125766

     More details

    Language:Japanese Book type:Scholarly book

    CiNii Books

Awards 【 display / non-display

  • 火の国情報シンポジウム2022奨励賞

    2022.3   情報処理学会九州支部  

    永井 麻裕,他

     More details

    Award type:Award from Japanese society, conference, symposium, etc.  Country:Japan

  • Best Paper Award

    2019.11   BWCCA-2019  

    渡辺 一樹,他

     More details

    Award type:Award from international society, conference, symposium, etc.  Country:Japan

  • 奨励発表賞

    2018.12   情報処理学会  

    本田 佳鈴,他

     More details

    Award type:Award from Japanese society, conference, symposium, etc.  Country:Japan

  • 奨励発表賞

    2018.11   情報処理学会  

    臼崎 翔太郎,他

     More details

    Award type:Award from Japanese society, conference, symposium, etc.  Country:Japan

  • Best Paper Award

    2017.8   NBiS-2017  

    臼崎 翔太郎,他

     More details

    Award type:Award from international society, conference, symposium, etc.  Country:Japan

Grant-in-Aid for Scientific Research 【 display / non-display

  • AIによって高度化されたサイバー攻撃に対抗する次世代クラウドセキュリティ基盤の構築

    Grant number:24K14917  2024.04 - 2027.03

    独立行政法人日本学術振興会  科学研究費基金  基盤研究(C)

      More details

    Authorship:Principal investigator 

  • クラウドサービスに対する大規模な分散型攻撃の検知とその規模の縮小化に関する研究

    Grant number:21K11849  2021.04 - 2025.03

    独立行政法人日本学術振興会  科学研究費基金  基盤研究(C)

      More details

    Authorship:Principal investigator 

  • クラウドサービスに対する経済的な損失を目的にしたEDoS攻撃の検知に関する研究

    Grant number:18K11268  2018.04 - 2023.03

    独立行政法人日本学術振興会  科学研究費補助金  基盤研究(C)

      More details

    Authorship:Principal investigator 

  • 深層学習を用いた筋電位による多要素個人認証の複数点測定による高精度化

    Grant number:24K14948  2024.04 - 2027.03

    独立行政法人日本学術振興会  科学研究費補助金  基盤研究(C)

      More details

    Authorship:Coinvestigator(s) 

  • DXの急展開に対応する超強靭なパスワード・リスト攻撃防止基盤の確立

    Grant number:22K12013  2022.04 - 2025.03

    独立行政法人日本学術振興会  科学研究費基金  基盤研究(C)

      More details

    Authorship:Coinvestigator(s) 

display all >>

Available Technology 【 display / non-display