Papers - IDA Takanori
-
Ghrelin is essential for lowering blood pressure during torpor Reviewed
Matsui K., Ida T., Oishi K., Kojima M., Sato T.
Frontiers in Endocrinology 15 1487028 2024.10
Language:English Publishing type:Research paper (scientific journal) Publisher:Frontiers in Endocrinology
Introduction: Daily torpor is an active hypothermic phenomenon that is observed in some mammals and birds during fasting. A decrease in blood pressure has also been observed in torpor; however, there remains a lack of knowledge of the underlying mechanism. We have previously reported that ghrelin, an orexigenic hormone, has a hypothermic effect and is essential for the induction and maintenance of torpor. It is also known that the ghrelin secretion is enhanced during fasting and that ghrelin receptors are distributed in the cardiovascular system. Therefore, this study was conducted to test the hypothesis that ghrelin is actively involved in the regulation of blood pressure during torpor induction. Methods: Male wild-type and ghrelin gene-deficient mice were generated by homologous recombination as previously reported. Mice, 10 weeks old, were included in this study and housed five per cage. The mice were maintained on a 12-h light/dark cycle (lights on from 7:00 to 19:00) with access to food and water ad libitum. Results: The continuous measurement of blood pressure using a telemetry system showed that induction of torpor by fasting did not decrease blood pressure in ghrelin gene-deficient mice. The analysis of heart rate variability revealed that sympathetic nerve activity was predominant in ghrelin-deficient mice during fasting. Furthermore, these features were cancelled by administration of a ghrelin receptor agonist and were comparable to those in wild-type mice. Discussion: In this study, we showed that blood pressure was elevated in ghrl-/- mice and that the blood pressure rhythm was abnormal. Furthermore, we showed that the ghrelin gene deficiency does not cause sufficient blood pressure reduction upon entry into the torpor, and that the administration of the ghrelin receptor agonist, GHRP-6, causes blood pressure reduction associated with torpor. Thus, we have shown for the first time that the active role of ghrelin is essential for active blood pressure reduction associated with torpor, and that this action is mediated by the inhibition of sympathetic nerve activity by ghrelin.
-
Yazawa T., Watanabe Y., Yokohama Y., Imamichi Y., Hasegawa K., Nakajima K.I., Kitano T., Ida T., Sato T., Islam M.S., Umezawa A., Takahashi S., Kato Y., Jahan S., Kawabe J.I.
Frontiers in Endocrinology 15 1480722 2024.10
Language:English Publishing type:Research paper (scientific journal) Publisher:Frontiers in Endocrinology
3β-Hydroxysteroid dehydrogenases (3β-HSDs) catalyze the oxidative conversion of delta (5)-ene-3-beta-hydroxy steroids and ketosteroids. Human 3β-HSD type 2 (HSD3B2) is predominantly expressed in gonadal and adrenal steroidogenic cells for producing all classes of active steroid hormones. Mutations in HSD3B2 gene cause a rare form of congenital adrenal hyperplasia with varying degree of salt wasting and incomplete masculinization, resulting from reduced production of corticoids and androgens. Therefore, evaluation of the HSD3B2 enzymatic activity in both pathways for each steroid hormone production is important for accurately understanding and diagnosing this disorder. Using progesterone receptor (PR)- and androgen receptor (AR)-mediated transactivation, we adapted a method that easily evaluates enzymatic activity of HSD3B2 by quantifying the conversion from substrates [pregnenolone (P5) and dehydroepiandrosterone (DHEA)] to (progesterone and androstenedione). HEK293 cells were transduced to express human HSD3B2, and incubated medium containing P5 or DHEA. Depending on the incubation time with HSD3B2-expressing cells, the culture media progressively increased luciferase activities in CV-1 cells, transfected with the PR/AR expression vector and progesterone-/androgen-responsive reporter. Culture media from human and other mammalian HSD3B1-expressing cells also increased the luciferase activities. HEK293 cells expressing various missense mutations in the HSD3B2 gene revealed the potential of this system to evaluate the relationship between the enzymatic activities of mutant proteins and patient phenotype.
-
Acyl modifications in bovine, porcine, and equine ghrelins Reviewed
Ida T., Tominaga H., Iwamoto E., Kurogi A., Okura A., Shimada K., Kato J., Kuwano A., Ode H., Nagata S., Kitamura K., Yazawa T., Sato-Hashimoto M., Yasuda M., Miyazato M., Shiimura Y., Sato T., Kojima M.
Frontiers in Endocrinology 15 1411483 2024.5
Authorship:Lead author, Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:Frontiers in Endocrinology
Ghrelin is a peptide hormone with various important physiological functions. The unique feature of ghrelin is its serine 3 acyl-modification, which is essential for ghrelin activity. The major form of ghrelin is modified with n-octanoic acid (C8:0) by ghrelin O-acyltransferase. Various acyl modifications have been reported in different species. However, the underlying mechanism by which ghrelin is modified with various fatty acids remains to be elucidated. Herein, we report the purification of bovine, porcine, and equine ghrelins. The major active form of bovine ghrelin was a 27-amino acid peptide with an n-octanoyl (C8:0) modification at Ser3. The major active form of porcine and equine ghrelin was a 28-amino acid peptide. However, porcine ghrelin was modified with n-octanol (C8:0), whereas equine ghrelin was modified with n-butanol (C4:0) at Ser3. This study indicates the existence of structural divergence in ghrelin and suggests that it is necessary to measure the minor and major forms of ghrelin to fully understand its physiology.
-
Jiang D, Matsuzaki M, Ida T, Kitamura K, Kato J
Hypertension research : official journal of the Japanese Society of Hypertension 47 ( 4 ) 1017 - 1023 2024.2
Language:English Publishing type:Research paper (scientific journal) Publisher:Springer Nature
Increased blood pressure variability (BPV) was shown to be associated with cardiovascular morbidities and/or mortalities. There are various types of BPV depending on time intervals of BP measurements, ranging from beat-to-beat to visit-to-visit or year-to-year. We previously found that continuous infusion of noradrenaline (NA) for 14 days increased short-term BPV every 15 min in rats. The aims of this study were to examine (1) whether NA infusion increases very short-term beat-to-beat BPV, (2) the effects of azelnidipine and hydralazine on NA-induced BPV, and (3) whether baroreceptor reflex sensitivity (BRS) is affected by NA or NA plus those vasodilators. Nine-week-old Wistar rats infused subcutaneously with 30 μg/h NA were orally treated with or without 9.7 mg/day azelnidipine or 5.9 mg/day hydralazine over 14 days. BP levels were continuously monitored via abdominal aortic catheter with a telemetry system in an unrestrained condition. Standard deviations (SDs) were used to evaluate beat-to-beat BPV and BPV every 15 min which was obtained by averaging BP levels for 10-s segment at each time point. BRS was determined by a sequence analysis. Continuous NA infusion over 14 days increased average BP, beat-to-beat BPV, and BPV every 15 min, lowering BRS. Comparing the two vasodilators, hydralazine reduced BP elevation by NA; meanwhile, azelnidipine alleviated BPV augmentation, preserving BRS, despite a smaller BP reduction. Thus, NA infusion increased both very short- and short-term BPV concomitantly with impaired BRS, while azelnidipine had an inhibitory effect, possibly independent of BP-lowering, on those types of BPV and impairment of BRS.
-
Diversity of Androgens; Comparison of Their Significance and Characteristics in Vertebrate Species Reviewed
Yazawa T., Imamichi Y., Sato T., Ida T., Umezawa A., Kitano T.
Zoological Science 41 ( 1 ) 77 - 86 2024.1
Language:English Publishing type:Research paper (scientific journal) Publisher:Zoological Science
Androgen(s) is one of the sex steroids that are involved in many physiological phenomena of vertebrate species. Although androgens were originally identified as male sex hormones, it is well known now that they are also essential in females. As in the case of other steroid hormones, androgen is produced from cholesterol through serial enzymatic reactions. Although testis is a major tissue to produce androgens in all species, androgens are also produced in ovary and adrenal (interrenal tissue). Testosterone is the most common and famous androgen. It represents a major androgen both in males and females of almost vertebrate species. In addition, testosterone is a precursorforproducingsignificantandrogenssuchas11-ketotestosterone,5α-dihydrotestosterone, 11-ketodihydrotestosterones and 15α-hydroxytestosterone in a species- or sex-dependent manner for their homeostasis. In this article, we will review the significance and characteristics of these androgens, following a description of the history of testosterone discovery and its synthetic pathways.
DOI: 10.2108/zs230064
-
Izumi T., Saito A., Ida T., Mukuda T., Katayama Y., Wong M.K.S., Tsukada T.
Cell and Tissue Research 396 ( 2 ) 197 - 212 2024
Language:English Publishing type:Research paper (scientific journal) Publisher:Cell and Tissue Research
The natriuretic peptide (NP) family consists of cardiac NPs (ANP, BNP, and VNP) and brain NPs (CNPs) in teleosts. In addition to CNP1-4, a paralogue of CNP4 (named CNP4b) was recently discovered in basal teleosts including Japanese eel. Mammals have lost most Cnps during the evolution, but teleost cnps were conserved and diversified, suggesting that CNPs are important hormones for maintaining brain functions in teleost. The present study evaluated the potency of each Japanese eel CNP to their NP receptors (NPR-A, NPR-B, NPR-C, and NPR-D) overexpressed in CHO cells. A comprehensive brain map of cnps- and nprs-expressing neurons in Japanese eel was constructed by integrating the localization results obtained by in situ hybridization. The result showed that CHO cells expressing NPR-A and NPR-B induced strong cGMP productions after stimulation by cardiac and brain NPs, respectively. Regarding brain distribution of cnps, cnp1 is engaged in the ventral telencephalic area and periventricular area including the parvocellular preoptic nucleus (Pp), anterior/posterior tuberal nuclei, and periventricular gray zone of the optic tectum. cnp3 is found in the habenular nucleus and prolactin cells in the pituitary. cnp4 is expressed in the ventral telencephalic area, while cnp4b is expressed in the motoneurons in the medullary area. Such CNP isoform-specific localizations suggest that function of each CNP has diverged in the eel brain. Furthermore, the Pp lacking the blood-brain barrier expressed both npra and nprb, suggesting that endocrine and paracrine NPs interplay for regulating the Pp functions in Japanese eels.
-
Natriuretic peptides potentiate cardiac hypertrophic response to noradrenaline in rats Reviewed
Jiang D., Matsuzaki M., Ida T., Kitamura K., Tsuruda T., Kaikita K., Kato J.
Peptides 166 171035 2023.8
Language:English Publishing type:Research paper (scientific journal) Publisher:Peptides
Excessive activation of the sympathetic nervous system is involved in cardiovascular damage including cardiac hypertrophy. Natriuretic peptides are assumed to exert protective actions for the heart, alleviating hypertrophy and/or fibrosis of the myocardium. In contrast to this assumption, we show in the present study that both atrial and C-type natriuretic peptides (ANP and CNP) potentiate cardiac hypertrophic response to noradrenaline (NA) in rats. Nine-week-old male Wistar rats were continuously infused with subcutaneous 30 micro-g/h NA without or with persistent intravenous administration of either 1.0 micro-g/h ANP or CNP for 14 days. Blood pressure (BP) was recorded under an unrestrained condition by a radiotelemetry system. Cardiac hypertrophic response to NA was evaluated by heart weight/body weight (HW/BW) ratio and microscopic measurement of myocyte size of the left ventricle. Mean BP levels at the light and dark cycles rose by about 20 mmHg following NA infusion for 14 days, with slight increases in HW/BW ratio and ventricular myocyte size. Infusions of ANP and CNP had no significant effects on mean BP in NA-infused rats, while two natriuretic peptides potentiated cardiac hypertrophic response to NA. Cardiac hypertrophy induced by co-administration of NA and ANP was attenuated by treatment with prazosin or atenolol. In summary, both ANP and CNP potentiated cardiac hypertrophic effect of continuously infused NA in rats, suggesting a possible pro-hypertrophic action of natriuretic peptides on the heart.
-
Nakagami S., Notaguchi M., Kondo T., Okamoto S., Ida T., Sato Y., Higashiyama T., Tsai A.Y.L., Ishida T., Sawa S.
Science advances 9 ( 22 ) eadf4803 2023.6
Language:English Publishing type:Research paper (scientific journal) Publisher:Science advances
Plants use many long-distance and systemic signals to modulate growth and development, as well as respond to biotic and abiotic stresses. Parasitic nematodes infect host plant roots and cause severe damage to crop plants. However, the molecular mechanisms that regulate parasitic nematode infections are still unknown. Here, we show that plant parasitic root-knot nematodes (RKNs), Meloidogyne incognita, modulate the host CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (CLE)-CLV1 signaling module to promote the infection progression. Plants deficient in the CLE signaling pathway show enhanced RKN resistance, whereas CLE overexpression leads to increased susceptibility toward RKN. Grafting analysis shows that CLV1 expression in the shoot alone is sufficient to positively regulate RKN infection. Together with results from the split-root culture system, infection assays, and CLE3-CLV1 binding assays, we conclude that mobile root-derived CLE signals are perceived by CLV1 in the shoot, which subsequently produce systemic signals to promote gall formation and RKN reproduction.
-
Comparison of Placental HSD17B1 Expression and Its Regulation in Various Mammalian Species. Reviewed
Yazawa T, Islam MS, Imamichi Y, Watanabe H, Yaegashi K, Ida T, Sato T, Kitano T, Matsuzaki S, Umezawa A, Muranishi Y
Animals : an open access journal from MDPI 13 ( 4 ) 2023.2
Language:English Publishing type:Research paper (scientific journal) Publisher:Animals
During mammalian gestation, large amounts of progesterone are produced by the placenta and circulate for the maintenance of pregnancy. In contrast, primary plasma estrogens are different between species. To account for this difference, we compared the expression of ovarian and placental steroidogenic genes in various mammalian species (mouse, guinea pig, porcine, ovine, bovine, and human). Consistent with the ability to synthesize progesterone, CYP11A1/Cyp11a1, and bi-functional HSD3B/Hsd3b genes were expressed in all species. CYP17A1/Cyp17a1 was expressed in the placenta of all species, excluding humans. CYP19A/Cyp19a1 was expressed in all placental estrogen-producing species, whereas estradiol-producing HSD17B1 was only strongly expressed in the human placenta. The promoter region of HSD17B1 in various species possesses a well-conserved SP1 site that was activated in human placental cell line JEG-3 cells. However, DNA methylation analyses in the ovine placenta showed that the SP1-site in the promoter region of HSD17B1 was completely methylated. These results indicate that epigenetic regulation of HSD17B1 expression is important for species-specific placental sex steroid production. Because human HSD17B1 showed strong activity for the conversion of androstenedione into testosterone, similar to HSD17B1/Hsd17b1 in other species, we also discuss the biological significance of human placental HSD17B1 based on the symptoms of aromatase-deficient patients.
DOI: 10.3390/ani13040622
-
Kobayashi M, Maruyama N, Yamamoto Y, Togawa T, Ida T, Yoshida M, Miyazato M, Kitada M, Hayashi Y, Kashiwagi A, Kitamura T
Journal of diabetes investigation 14 ( 5 ) 648 - 658 2023.2
Language:English Publishing type:Research paper (scientific journal) Publisher:Journal of Diabetes Investigation
Aims/Introduction: Glucagon, a peptide hormone produced from proglucagon, is involved in the pathophysiology of diabetes. Plasma glucagon levels are currently measured by sandwich enzyme-linked immunosorbent assay (ELISA), but the currently used sandwich ELISA cross-reacts with proglucagon-derived peptides, thereby providing incorrect results in subjects with elevated plasma proglucagon-derived peptide levels. We aimed to develop a more broadly reliable ELISA for measuring plasma glucagon levels. Materials and Methods: A new sandwich ELISA was developed using newly generated monoclonal antibodies against glucagon. After its validation, plasma glucagon levels were measured with the new ELISA and the currently used ELISA in subjects who underwent laparoscopic sleeve gastrectomy (LSG) and in outpatients with suspected glucose intolerance. The ELISA results were compared with those from liquid chromatography-high resolution mass (LC-HRMS) analysis, which we previously established as the most accurate measuring system. Results: The new ELISA has high specificity (<1% cross-reactivities) and high sensitivity (a lower range of 0.31 pmol/L). Plasma glucagon values in the subjects who underwent laparoscopic sleeve gastrectomy and some outpatients with suspected glucose intolerance differed between the new ELISA and the currently used ELISA. These subjects also showed markedly high plasma glicentin levels. Despite the elevated plasma glicentin levels, the new ELISA showed better positive correlation with LC-HRMS than did the currently used ELISA. Conclusions: The new ELISA enables more accurate measurement of plasma glucagon than the currently used ELISA, even in subjects with elevated proglucagon-derived peptide levels. It should be clinically useful in elucidating the pathophysiology of individual diabetic patients.
DOI: 10.1111/jdi.13986
-
Insights into the Regulation of Offspring Growth by Maternally Derived Ghrelin Reviewed
Sato T, Ida T, Shimura Y, IMatsui K, Oishi K, Kojima M
Frontiers in Endocrinology 13 852636 2022
Language:English Publishing type:Research paper (scientific journal) Publisher:Frontiers in Endocrinology
The regulation of fetal development by bioactive substances such as hormones and neuropeptides derived from the gestational mother is considered to be essential for the development of the fetus. On the other hand, it has been suggested that changes in the physiological state of the pregnant mother due to various factors may alter the secretion of these bioactive substances and induce metabolic changes in the offspring, such as obesity, overeating, and inflammation, thereby affecting postnatal growth and health. However, our knowledge of how gestational maternal bioactive substances modulate offspring physiology remains fragmented and lacks a systematic understanding. In this mini-review, we focus on ghrelin, which regulates growth and energy metabolism, to advance our understanding of the mechanisms by which maternally derived ghrelin regulates the growth and health of the offspring. Understanding the regulation of offspring growth by maternally-derived ghrelin is expected to clarify the fetal onset of metabolic abnormalities and lead to a better understanding of lifelong health in the next generation of offspring.
-
Thermoregulatory role of ghrelin in the induction of torpor under a restricted feeding condition Reviewed
Sato T., Oishi K., Koga D., Ida T., Sakai Y., Kangawa K., Kojima M.
Scientific Reports 11 ( 1 ) 17954 2021.12
Language:Japanese Publishing type:Research paper (scientific journal) Publisher:Scientific Reports
Ghrelin, a circulating orexigenic hormone secreted from the stomach, stimulates appetite and food intake by activating the hypothalamic arcuate nucleus. Administration of exogenous ghrelin exerts anabolic effects, causing weight gain, increased adiposity, and decreased metabolism. Body temperature (BT), which is determined by the balance of heat production and heat loss, must be strictly regulated to maintain proper cellular function and metabolism. However, the role of ghrelin in thermoregulation remains unclear. In this study, we found that ghrelin was essential for decreasing BT when mice are placed under calorie restriction. Elevated ghrelin concentrations induced by fasting correlated with significant decreases in BT, a hibernation-like state called torpor. Ghrelin-deficient (Ghrl−/−) animals could not enter torpor. The BT of Ghrl−/− mice also remained high under restricted feeding, but the animals gradually entered precipitous hypothermia, indicating thermoregulatory impairment. These effects of ghrelin on thermoregulation were the result of suppression of sympathetic nervous system activity input to brown adipose tissue; in the absence of ghrelin, it was not possible to suppress uncoupling protein 1 (ucp1) expression and decrease BT in low-energy states. Together, these findings demonstrate that ghrelin is an essential circulating hormone involved in lowering BT.
-
Analyses of molecular characteristics and enzymatic activities of ovine hsd17b3 Reviewed
Islam M.S., Uwada J., Hayashi J., Kikuya K.I., Muranishi Y., Watanabe H., Yaegashi K., Hasegawa K., Ida T., Sato T., Imamichi Y., Kitano T., Miyashiro Y., Khan R.I., Takahashi S., Umezawa A., Suzuki N., Sekiguchi T., Yazawa T.
Animals 11 ( 10 ) 2021.10
Language:Japanese Publishing type:Research paper (scientific journal) Publisher:Animals
17β-hydroxysteroid dehydrogenase type 3 (HSD17B3) converts androstenedione (A4) into testosterone (T), which regulates sex steroid production. Because various mutations of the HSD17B3 gene cause disorder of sex differentiation (DSD) in multiple mammalian species, it is very important to reveal the molecular characteristics of this gene in various species. Here, we revealed the open reading frame of the ovine HSD17B3 gene. Enzymatic activities of ovine HSD17B3 and HSD17B1 for converting A4 to T were detected using ovine androgen receptor-mediated transactivation in reporter assays. Although HSD17B3 also converted estrone to estradiol, this activity was much weaker than those of HSD17B1. Although ovine HSD17B3 has an amino acid sequence that is conserved compared with other mammalian species, it possesses two amino acid substitutions that are consistent with the reported variants of human HSD17B3. Substitutions of these amino acids in ovine HSD17B3 for those in human did not affect the enzymatic activities. However, enzymatic activities declined upon missense mutations of the HSD17B3 gene associated with 46,XY DSD, affecting amino acids that are conserved between these two species. The present study provides basic information and tools to investigate the molecular mechanisms behind DSD not only in ovine, but also in various mammalian species.
DOI: 10.3390/ani11102876
-
Kato J., Kawagoe Y., Jiang D., Ida T., Shimamoto S., Igarashi K., Kitamura K.
Peptides 142 2021.8
Language:English Publishing type:Research paper (scientific journal) Publisher:Peptides
Plasma levels of the hypotensive peptides of adrenomedullin and atrial and B-type natriuretic peptides (AM, ANP, BNP) are possible biomarkers for cardiovascular diseases. Increased variability of body mass index (BMI) over a certain period of time has been reported to be associated with cardiovascular morbidity or mortality. The aim of this study is to examine clinical significance of those hypotensive peptides as biomarkers by analyzing the relationship between plasma levels of the peptides and year-by-year variability of BMI in the general population without overt cardiovascular diseases. The subjects were 427 local residents (141 males and 286 females) attending their annual health check-up, who had been examined at least 5 times over the preceding period of 10 years. They were divided into two groups of low or high variability by the median of coefficient of variation (CV) of BMI values for each gender. Plasma AM levels of those with high year-by-year variability of BMI were significantly increased, as compared to the group with low variability, in both genders; meanwhile, such a difference was not noted in plasma levels of the natriuretic peptides. No significant differences were found in the basal parameters, which could affect plasma AM level, such as age, BMI, blood pressure or serum creatinine, between two groups. In conclusion, increase in plasma AM was associated with high year-by-year variability of BMI in the general population without overt heart disease. This relationship between the two suggests that increased plasma AM level is a cardiovascular risk marker.
-
Characterization of putative tachykinin peptides in Caenorhabditis elegans Reviewed
Sakai N., Ohno H., Yoshida M., Iwamoto E., Kurogi A., Jiang D., Sato T., Miyazato M., Kojima M., Kato J., Ida T.
Biochemical and Biophysical Research Communications 559 197 - 202 2021.6
Language:Japanese Publishing type:Research paper (scientific journal) Publisher:Biochemical and Biophysical Research Communications
Tachykinin-like peptides, such as substance P, neurokinin A, and neurokinin B, are among the earliest discovered and best-studied neuropeptide families, and research on them has contributed greatly to our understanding of the endocrine control of many physiological processes. However, there are still many orphan tachykinin receptor homologs for which cognate ligands have not yet been identified, especially in small invertebrates, such as the nematode Caenorhabditis elegans (C. elegans). We here show that the C. elegans nlp-58 gene encodes putative ligands for the orphan G protein-coupled receptor (GPCR) TKR-1, which is a worm ortholog of tachykinin receptors. We first determine, through an unbiased biochemical screen, that a peptide derived from the NLP-58 preprotein stimulates TKR-1. Three mature peptides that are predicted to be generated from NLP-58 show potent agonist activity against TKR-1. We designate these peptides as C. elegans tachykinin (CeTK)-1, −2, and −3. The CeTK peptides contain the C-terminal sequence GLR-amide, which is shared by tachykinin-like peptides in other invertebrate species. nlp-58 exhibits a strongly restricted expression pattern in several neurons, implying that CeTKs behave as neuropeptides. The discovery of CeTKs provides important information to aid our understanding of tachykinin-like peptides and their functional interaction with GPCRs.
-
Yazawa T., Inaba H., Imamichi Y., Sekiguchi T., Uwada J., Islam M.S., Orisaka M., Mikami D., Ida T., Sato T., Miyashiro Y., Takahashi S., Khan M.R.I., Suzuki N., Umezawa A., Kitano T.
Frontiers in Endocrinology 12 657360 2021.3
Language:Japanese Publishing type:Research paper (scientific journal) Publisher:Frontiers in Endocrinology
Although 11-ketotestosterone (11KT) and testosterone (T) are major androgens in both teleosts and humans, their 5α-reduced derivatives produced by steroid 5α-reductase (SRD5A/srd5a), i.e., 11-ketodihydrotestosterone (11KDHT) and 5α-dihydrotestosterone (DHT), remains poorly characterized, especially in teleosts. In this study, we compared the presence and production of DHT and 11KDHT in Japanese eels and humans. Plasma 11KT concentrations were similar in both male and female eels, whereas T levels were much higher in females. In accordance with the levels of their precursors, 11KDHT levels did not show sexual dimorphism, whereas DHT levels were much higher in females. It is noteworthy that plasma DHT levels in female eels were higher than those in men. In addition, plasma 11KDHT was undetectable in both sexes in humans, despite the presence of 11KT. Three srd5a genes (srd5a1, srd5a2a and srd5a2b) were cloned from eel gonads. All three srd5a genes were expressed in the ovary, whereas only both srd5a2 genes were expressed in the testis. Human SRD5A1 was expressed in testis, ovary and adrenal, whereas SRD5A2 was expressed only in testis. Human SRD5A1, SRD5A2 and both eel srd5a2 isoforms catalyzed the conversion of T and 11KT into DHT and 11KDHT, respectively, whereas only eel srd5a1 converted T into DHT. DHT and 11KDHT activated eel androgen receptor (ar)α-mediated transactivation as similar fashion to T and 11KT. In contrast, human AR and eel arβ were activated by DHT and11KDHT more strongly than T and 11KT. These results indicate that in teleosts, DHT and 11KDHT may be important 5α-reduced androgens produced in the gonads. In contrast, DHT is the only major 5α-reduced androgens in healthy humans.
-
11-Ketotestosterone is a Major Androgen Produced in Porcine Adrenal Glands and Testes. Reviewed
Yazawa T, Sato T, Nemoto T, Nagata S, Imamichi Y, Kitano T, Sekiguchi T, Uwada J, Islam MS, Mikami D, Nakajima I, Takahashi S, Khan MRI, Suzuki N, Umezawa A, Ida T
The Journal of steroid biochemistry and molecular biology 210 105847 2021.2
Language:English Publishing type:Research paper (scientific journal) Publisher:Journal of Steroid Biochemistry and Molecular Biology
Porcine steroid hormone profiles have some unique characteristics. We previously studied human and murine steroidogenesis using steroidogenic cells-derived from mesenchymal stem cells (MSCs). To investigate porcine steroidogenesis, we induced steroidogenic cells from porcine subcutaneous preadipocytes (PSPA cells), which originate from MSCs. Using cAMP, adenovirus-mediated introduction of steroidogenic factor-1 (SF-1)/adrenal 4-binding protein (Ad4BP) induced the differentiation of PSPA cells into sex steroid-producing cells. Introducing SF-1/Ad4BP also induced the aldo-keto reductase 1C1 (AKR1C1) gene. Porcine AKR1C1 had 17β-hydroxysteroid dehydrogenase activity, which converts androstenedione and 11-ketoandrostenedione into testosterone (T) and 11-ketotestosteorne (11KT). Furthermore, differentiated cells expressed hydroxysteroid 11β-dehydrogenase 2 (HSD11B2) and produced 11KT. HSD11B2 was expressed in testicular Leydig cells and the adrenal cortex. 11KT was present in the plasma of both immature male and female pigs, with slightly higher levels in the male pigs. T levels were much higher in the male pigs. It is noteworthy that in the female pigs, the 11KT levels were >10-fold higher than the T levels. However, castration altered the 11KT and T plasma profiles in the male pigs to near those of the females. 11KT induced endothelial nitric oxide synthase (eNOS) in porcine vascular endothelial cells. These results indicate that 11KT is produced in porcine adrenal glands and testes, and may regulate cardiovascular functions through eNOS expression.
-
Evaluation of 17β-hydroxysteroid dehydrogenase activity using androgen receptor-mediated transactivation. Reviewed
Yazawa T, Imamichi Y, Uwada J, Sekiguchi T, Mikami D, Kitano T, Ida T, Sato T, Nemoto T, Nagata S, Islam Khan MR, Takahashi S, Ushikubi F, Suzuki N, Umezawa A, Taniguchi T
The Journal of steroid biochemistry and molecular biology 196 105493 2020.2
Language:Japanese Publishing type:Research paper (scientific journal)
-
Suppressive effect of ghrelin on nicotine-induced clock gene expression in the mouse pancreas. Reviewed
Sato T, Oishi K, Ida T, Kojima M
Endocrine journal 67 ( 1 ) 73 - 80 2020.1
Language:Japanese Publishing type:Research paper (scientific journal) Publisher:一般社団法人 日本内分泌学会
Those who smoke nicotine-based cigarettes have elevated plasma levels of ghrelin, a hormone secreted from the stomach. Ghrelin has various physiological functions and has recently been shown to be involved in regulating biological rhythms. Therefore, in this study, in order to clarify the significance of the plasma ghrelin increase in smokers, we sought to clarify how nicotine and ghrelin affect the expression dynamics of clock genes using a mouse model. A single dose of nicotine administered intraperitoneally increased plasma ghrelin concentrations transiently, whereas continuous administration of nicotine with an osmotic minipump did not induce any change in the plasma ghrelin concentration. Single administration of nicotine resulted in a transient increase in ghrelin gene expression in the pancreas but not in the stomach, which is the major producer of ghrelin. In addition, in the pancreas, the expression of clock genes was also increased temporarily. Therefore, in order to clarify the interaction between nicotine-induced ghrelin gene expression and clock gene expression in the pancreas, nicotine was administered to ghrelin gene-deficient mice. Administration of nicotine to ghrelin-gene deficient mice increased clock gene expression in the pancreas. However, upon nicotine administration to mice pretreated with octanoate to upregulate ghrelin activity, expression levels of nicotine-inducible clock genes in the pancreas were virtually the same as those in mice not administered nicotine. Thus, our findings indicate that pancreatic ghrelin may suppress nicotine-induced clock gene expression in the pancreas.
-
A new action of peptide hormones for survival in a low-nutrient environment. Reviewed
Sato T, Nemoto T, Hasegawa K, Ida T, Kojima M
Endocrine journal 66 ( 11 ) 943 - 952 2019.11
Language:Japanese Publishing type:Research paper (scientific journal) Publisher:一般社団法人 日本内分泌学会
Malnutrition occurs when nutrient intake is too low for any reason and occurs regardless of gender or age. Therefore, besides loss of eating or digestive functionality due to illness, malnutrition can occur when a healthy individual undergoes an extreme diet and biases their nutrition, or when athletes exerts more energy than they can replenish through food. It has recently been reported that in Japan, the mortality rate of leaner individuals is equal to or higher than that of obese people. It is important to understand what homeostatic maintenance mechanism is behind this when the body is under hypotrophic conditions. Such mechanisms are generally endocranially controlled. We address this fundamental concern in this paper by focusing on peptide hormones. We introduce a mechanism for survival in a malnourished state <i>via</i> the regulation of food intake and temperature. Additionally, we will discuss the latest findings and future prospects for research on changes in the endocrine environment associated with malnutrition associated with exercise. We also review changes in next-generation endocrine environments when caused by malnutrition brought on by dieting.