KADOWAKI Hisae

写真a

Affiliation

Faculty of Medicine School of Medicine Department of Medical Sciences, Biochemistry and Molecular Biology

Title

Assistant Professor

External Link

Related SDGs


Degree 【 display / non-display

  • 博士(学術) ( 2005.3   東京医科歯科大学 )

Research Areas 【 display / non-display

  • Life Science / Oral pathobiological science

  • Life Science / Functional biochemistry

  • Life Science / Medical biochemistry

  • Life Science / Cell biology

 

Papers 【 display / non-display

  • ER-mitochondria contacts mediate lipid radical transfer via RMDN3/PTPIP51 phosphorylation to reduce mitochondrial oxidative stress Reviewed

    Shiiba I., Ito N., Oshio H., Ishikawa Y., Nagao T., Shimura H., Oh K.W., Takasaki E., Yamaguchi F., Konagaya R., Kadowaki H., Nishitoh H., Tanzawa T., Nagashima S., Sugiura A., Fujikawa Y., Umezawa K., Tamura Y., Il Lee B., Hirabayashi Y., Okazaki Y., Sawa T., Inatome R., Yanagi S.

    Nature Communications   16 ( 1 )   1508   2025.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Nature Communications  

    The proximal domains of mitochondria and the endoplasmic reticulum (ER) are linked by tethering factors on each membrane, allowing the efficient transport of substances, including lipids and calcium, between them. However, little is known about the regulation and function of mitochondria-ER contacts (MERCs) dynamics under mitochondrial damage. In this study, we apply NanoBiT technology to develop the MERBiT system, which enables the measurement of reversible MERCs formation in living cells. Analysis using this system suggests that induction of mitochondrial ROS increases MERCs formation via RMDN3 (also known as PTPIP51)-VAPB tethering driven by RMDN3 phosphorylation. Disruption of this tethering caused lipid radical accumulation in mitochondria, leading to cell death. The lipid radical transfer activity of the TPR domain in RMDN3, as revealed by an in vitro liposome assay, suggests that RMDN3 transfers lipid radicals from mitochondria to the ER. Our findings suggest a potential role for MERCs in cell survival strategy by facilitating the removal of mitochondrial lipid radicals under mitochondrial damage.

    DOI: 10.1038/s41467-025-56666-4

    Scopus

    PubMed

  • Etomoxir suppresses the expression of PPARgamma2 and inhibits the thermogenic gene induction of brown adipocytes through pathways other than β-oxidation inhibition. Reviewed

    Shimura H, Yamamoto S, Shiiba I, Oikawa M, Uchinomiya S, Ojida A, Yanagi S, Kadowaki H, Nishitoh H, Fukuda T, Nagashima S, Yamaguchi T

    Journal of biochemistry   2024.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/jb/mvae092

    PubMed

  • The Derlin-1-Stat5b axis maintains homeostasis of adult hippocampal neurogenesis Reviewed

    Murao N., Matsuda T., Kadowaki H., Matsushita Y., Tanimoto K., Katagiri T., Nakashima K., Nishitoh H.

    EMBO Reports   25 ( 8 )   3678 - 3706   2024.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:EMBO Reports  

    Adult neural stem cells (NSCs) in the hippocampal dentate gyrus continuously proliferate and generate new neurons throughout life. Although various functions of organelles are closely related to the regulation of adult neurogenesis, the role of endoplasmic reticulum (ER)-related molecules in this process remains largely unexplored. Here we show that Derlin-1, an ER-associated degradation component, spatiotemporally maintains adult hippocampal neurogenesis through a mechanism distinct from its established role as an ER quality controller. Derlin-1 deficiency in the mouse central nervous system leads to the ectopic localization of newborn neurons and impairs NSC transition from active to quiescent states, resulting in early depletion of hippocampal NSCs. As a result, Derlin-1-deficient mice exhibit phenotypes of increased seizure susceptibility and cognitive dysfunction. Reduced Stat5b expression is responsible for adult neurogenesis defects in Derlin-1-deficient NSCs. Inhibition of histone deacetylase activity effectively induces Stat5b expression and restores abnormal adult neurogenesis, resulting in improved seizure susceptibility and cognitive dysfunction in Derlin-1-deficient mice. Our findings indicate that the Derlin-1-Stat5b axis is indispensable for the homeostasis of adult hippocampal neurogenesis.

    DOI: 10.1038/s44319-024-00205-7

    Scopus

    PubMed

  • Chemical chaperones ameliorate neurodegenerative disorders in Derlin-1-deficient mice via improvement of cholesterol biosynthesis Reviewed

    Sugiyama T., Murao N., Kadowaki H., Nishitoh H.

    Scientific Reports   12 ( 1 )   21840   2022.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Scientific Reports  

    There are no available therapies targeting the underlying molecular mechanisms of neurodegenerative diseases. Although chaperone therapies that alleviate endoplasmic reticulum (ER) stress recently showed promise in the treatment of neurodegenerative diseases, the detailed mechanisms remain unclear. We previously reported that mice with central nervous system-specific deletion of Derlin-1, which encodes an essential component for ER quality control, are useful as models of neurodegenerative diseases such as spinocerebellar degeneration. Cholesterol biosynthesis is essential for brain development, and its disruption inhibits neurite outgrowth, causing brain atrophy. In this study, we report a novel mechanism by which chemical chaperones ameliorate brain atrophy and motor dysfunction. ER stress was induced in the cerebella of Derlin-1 deficiency mice, whereas the administration of a chemical chaperone did not alleviate ER stress. However, chemical chaperone treatment ameliorated cholesterol biosynthesis impairment through SREBP-2 activation and simultaneously relieved brain atrophy and motor dysfunction. Altogether, these findings demonstrate that ER stress may not be the target of action of chaperone therapies and that chemical chaperone-mediated improvement of brain cholesterol biosynthesis is a promising novel therapeutic strategy for neurodegenerative diseases.

    DOI: 10.1038/s41598-022-26370-0

    Scopus

    PubMed

  • Molecular mechanism of thermogenesis via ER-mitochondrial crosstalk signaling in brown adipose tissue

    Kadowaki Hisae, Nishitoh Hideki

    94 ( 1 )   97 - 101   2022.2

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.14952/seikagaku.2022.940097

    Scopus

    CiNii Research

display all >>

Books 【 display / non-display

  • 実験医学別冊「疾患研究につながる オルガネラ実験必携プロトコール」小胞体関連分解ERADの解析方法

    門脇寿枝( Role: Joint author)

    羊土社  2024.11 

     More details

    Book type:Scholarly book

  • 褐色脂肪組織における小胞体-ミトコンドリア間クロストークシグナルを介した熱産生

    門脇寿枝、西頭英起( Role: Joint author)

    公益社団法人日本生化学会  2022.2 

     More details

    Language:Japanese Book type:Scholarly book

    DOI: 10.14952/SEIKAGAKU.2022.940097

  • アポトーシス. 「キーワード:蛋白質の一生」

    門脇寿枝, 西頭英起( Role: Joint author)

    共立出版  2008.6 

     More details

    Language:Japanese Book type:Scholarly book

  • 異常タンパク質が発信する神経細胞死シグナル伝達

    門脇寿枝, 西頭英起, 一條秀憲( Role: Joint author)

    実験医学  2006.6 

     More details

    Language:Japanese Book type:Scholarly book

  • アミロイドβ誘導性神経細胞死の分子メカニズム

    門脇寿枝, 西頭英起( Role: Joint author)

    Cognition and Dementia  2004.10 

     More details

    Language:Japanese Book type:Scholarly book

display all >>

MISC 【 display / non-display

  • Signaling Pathways from the Endoplasmic Reticulum and their Role in Diseases.

    Kadowaki H., Nishitoh H.

    Genes   4 ( 3 )   306 - 333   2013.7

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher: MDPI AG  

    DOI: 10.3390/genes4030306

Presentations 【 display / non-display

  • Molecular mechanism of stress-dependent co-translational degradation on the ER membrane Invited

    Hisae Kadowaki

    Ribosome meeting 2024 in Japan 

     More details

    Event date: 2024.12.2 - 2024.12.4

    Presentation type:Oral presentation (invited, special)  

  • Molecular mechanism of stress-dependent co-translational degradation on the ER membrane Invited

     More details

    Event date: 2024.11.27 - 2024.11.29

    Presentation type:Symposium, workshop panel (nominated)  

  • 小胞体膜近傍のストレス依存的翻訳ダイナミクス

    門脇寿枝

    AMEDプロテオスタシス領域 PRIME会議2024「ラボを知る・環境を知る」  

     More details

    Event date: 2024.9.17 - 2024.9.19

    Presentation type:Oral presentation (general)  

  • 小胞体膜近傍でのストレス依存的な翻訳時分解の分子機構 Invited

    門脇寿枝

    第17回タタバイオ分子クラブ 

     More details

    Event date: 2024.7.22

    Presentation type:Public lecture, seminar, tutorial, course, or other speech  

  • 小胞体ストレス依存的な翻訳時分解を介したタンパク質品質維持機構

    門脇寿枝、西頭英起

    第76回日本細胞生物学会大会 

     More details

    Event date: 2024.7.17 - 2024.7.19

    Presentation type:Oral presentation (general)  

display all >>

Awards 【 display / non-display

  • 宮崎大学女性研究者奨励賞

    2017.3   宮崎大学  

    門脇寿枝

     More details

    Country:Japan

  • 第39回日本分子生物学会年会優秀ポスター賞

    2016.11   日本分子生物学会  

    門脇寿枝

     More details

    Award type:Award from Japanese society, conference, symposium, etc.  Country:Japan

  • 第11回小胞体ストレス研究会ポスター大賞

    2016.10   小胞体ストレス研究会  

    門脇寿枝

     More details

    Award type:Award from Japanese society, conference, symposium, etc.  Country:Japan

  • 若手研究奨励賞

    2012.11   臨床ストレス応答学会  

    門脇寿枝

     More details

    Award type:Award from Japanese society, conference, symposium, etc.  Country:Japan

Grant-in-Aid for Scientific Research 【 display / non-display

  • 病態脳における小胞体プロテオスタシス破綻によるコレステロール合成不全と脳萎縮

    Grant number:22H02954  2022.04 - 2025.03

    基盤研究(B)

      More details

    Authorship:Coinvestigator(s) 

  • 小胞体ストレスにおける予防的品質管理の分子機構の解明

    Grant number:21K06175  2021.04 - 2024.03

    独立行政法人日本学術振興会  科学研究費補助金  基盤研究(C)

      More details

    Authorship:Principal investigator 

  • 小胞体ストレスによる新規合成タンパク質の分解機構の解明

    Grant number:18K06222  2018.04 - 2021.03

    科学研究費補助金  基盤研究(C)

      More details

    Authorship:Principal investigator 

  • 口腔領域マクロファージにおける小胞体ストレスシグナルを介した炎症病態機構の解明

    Grant number:15K11080  2015.04 - 2018.03

    科学研究費補助金  基盤研究(C)

      More details

    Authorship:Principal investigator 

    口腔内は常に創傷・温熱刺激・細菌・ウィルス感染・異物接触などのストレスに曝されており、難治性の口腔粘膜炎症を引き起こすことが多い。このような口腔内の慢性炎症は、ときとして口腔前がん病変(白板症・紅板症・扁平苔癬)、さらには発がんの原因になることもあり、その病態メカニズムを明らかにすることは重要である。最近の研究により、様々な炎症性疾患に共通に認められる組織、細胞内現象として、小胞体ストレスが注目されている。そこで本研究では、in vitroおよびin vivo炎症モデル実験系を用いて、炎症病態に関わる主要な細胞の一つであるマクロファージの分化・活性化・アポトーシスの分子機構を、小胞体ストレスシグナルの観点から解明し、炎症性疾患の克服に繋げることを目的とする。

  • 口腔領域がん克服のための小胞体ストレス応答の役割の解明

    Grant number:25870562  2013.04 - 2015.03

    科学研究費補助金  若手研究(B)

      More details

    Authorship:Principal investigator 

     本研究の対象とするがん細胞においては、小胞体ストレス誘導性アポトーシスが抑制され、逆に小胞体ストレス応答(UPR: Unfolded protein response)を介した生存・増殖シグナルが増強されていることが予想される。これまでの研究により、この小胞体ストレス誘導性アポトーシスシグナルの実行因子としてASK1 を同定し詳細な機能解析を行ってきた。一方、UPRの一つ小胞体関連分解(ERAD: ER-associated degradation)のメカニズムとその破綻による細胞死分子機構についても明らかにしてきた。これらの小胞体ストレスによる細胞の生と死に関する研究基盤を踏まえ、本研究では口腔がんにおける小胞体ストレスシグナルの関与を明らかにし、新たな口腔がん創薬標的に迫る。

display all >>