ティティズイン (ティティズイン)

THI THI ZIN

写真a

所属

工学教育研究部 工学科情報通信プログラム担当

職名

教授

外部リンク

学位 【 表示 / 非表示

  • 博士(工学) ( 2007年3月   大阪市立大学 )

  • 修士(工学) ( 2004年3月   大阪市立大学 )

  • Master of Information Science ( 1999年5月   ヤンゴンコンピュータ大学大学院 (ミャンマー) )

  • Bachelor of Science (Hons.) (Mathematics) ( 1995年5月   ヤンゴン大学(ミャンマー) )

研究キーワード 【 表示 / 非表示

  • 工場での作業の見える化

  • 高度な画像処理技術やAI技術を活用した 研究開発

  • 自立生活を支援するための高齢者24時間見守りシステム

  • ICTを活用した牛のモニタリングシステム

  • 知覚情報処理

  • 画像処理とその応用

研究分野 【 表示 / 非表示

  • 情報通信 / 知覚情報処理  / 画像処理

  • 情報通信 / データベース

  • ライフサイエンス / 動物生産科学

 

論文 【 表示 / 非表示

  • Advanced Predictive Analytics for Fetal Heart Rate Variability Using Digital Twin Integration. 査読あり 国際誌

    Tunn Cho Lwin, Thi Thi Zin, Pyke Tin, E. Kino, T. Ikenoue

    Sensors (Basel, Switzerland)   25 ( 5 )   2025年2月

     詳細を見る

    担当区分:責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Sensors  

    Fetal heart rate variability (FHRV) is a critical indicator of fetal well-being and autonomic nervous system development during labor. Traditional monitoring methods often provide limited insights, potentially leading to delayed interventions and suboptimal outcomes. This study proposes an advanced predictive analytics approach by integrating approximate entropy analysis with a hidden Markov model (HMM) within a digital twin framework to enhance real-time fetal monitoring. We utilized a dataset of 469 fetal electrocardiogram (ECG) recordings, each exceeding one hour in duration, to ensure sufficient temporal information for reliable modeling. The FHRV data were preprocessed and partitioned into parasympathetic and sympathetic components based on downward and non-downward beat detection. Approximate entropy was calculated to quantify the complexity of FHRV patterns, revealing significant correlations with umbilical cord blood gas parameters, particularly pH levels. The HMM was developed with four hidden states representing discrete pH levels and eight observed states derived from FHRV data. By employing the Baum–Welch and Viterbi algorithms for training and decoding, respectively, the model effectively captured temporal dependencies and provided early predictions of the fetal acid–base status. Experimental results demonstrated that the model achieved 85% training and 79% testing accuracy on the balanced dataset distribution, improving from 78% and 71% on the imbalanced dataset. The integration of this predictive model into a digital twin framework offers significant benefits for timely clinical interventions, potentially improving prenatal outcomes.

    DOI: 10.3390/s25051469

    Scopus

    PubMed

  • Optimizing black cattle tracking in complex open ranch environments using YOLOv8 embedded multi-camera system. 査読あり 国際誌

    Su Myat Noe, Thi Thi Zin, I. Kobayashi, Pyke Tin

    Scientific reports   15 ( 1 )   6820   2025年2月

     詳細を見る

    担当区分:責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Scientific Reports  

    Monitoring the daily activity levels of black cattle is a crucial aspect of their well-being. The rapid advancements in artificial intelligence have transformed computer vision applications, including object detection, segmentation, and tracking. This has led to more effective and precise monitoring techniques for livestock. In modern cattle farms, video monitoring is essential for analyzing behavior, evaluating health, and predicting estrus events in precision farming. This paper introduces the novel Customized Multi-Camera Multi-Cattle Tracking (MCMCT) system. This unique approach uses four cameras to overcome the challenges of detecting and tracking black cattle in complex open ranch environments. The MCMCT system enhances a tracking-by-detection model with the YOLO v8 segmentation model as the detection backbone network to develop a precision black cattle monitoring system. Single-camera setups in real-world datasets of our open ranches, covering 23.3 m x 20 m with 55 cattle, have limitations in capturing all necessary details. Therefore, a multi-camera solution provides better coverage and more accurate behavior detection of cattle. The effectiveness of the MCMCT system is demonstrated through experimental results, with the YOLOv8-MCMCT system achieving an average Multi-Object Tracking Accuracy (MOTA) of 95.61% across 10 cases of 4 cameras at a processing speed of 30 frames per second. This high accuracy is a testament to the performance of the proposed MCMCT system. Additionally, integrating the Segment Anything Model (SAM) with YOLOv8 enhances the system’s capability by automating cattle mask region extraction, reducing the need for manual labeling. Comparative analysis with state-of-the-art deep learning-based tracking methods, including Bot-sort, Byte-track, and OC-sort, further highlights the MCMCT’s performance in multi-cattle tracking within complex natural scenes. The advanced algorithms and capabilities of the MCMCT system make it a valuable tool for non-contact automatic livestock monitoring in precision cattle farming. Its adaptability ensures effective performance across varied ranch environments without extensive retraining. This research significantly contributes to livestock monitoring, offering a robust solution for tracking black cattle and enhancing overall agricultural efficiency and management.

    DOI: 10.1038/s41598-025-91553-4

    Scopus

    PubMed

  • Utilizing Behavioral Features for Predicting Calving Time 査読あり 国際誌

    Wai Hnin Eaindrar Mg, Pyke Tin, M. Aikawa, I. Kobayashi, Y. Horii, K. Honkawa K., Thi Thi Zin

    Lecture Notes in Electrical Engineering   1321 LNEE   148 - 159   2025年2月

     詳細を見る

    担当区分:最終著者, 責任著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:Lecture Notes in Electrical Engineering  

    Accurately predicting calving time in cattle is crucial for enhancing livestock management and ensuring animal welfare. Our research presents a novel approach combining advanced computer vision and deep learning techniques to predict calving time based on cattle behavior. We employ a custom YOLOv8 model for cattle detection, achieving robust and efficient localization of individual cattle in various farm environments. Our Customized Tracking Algorithm (CTA) is utilized to maintain continuous identity tracking for each cow, allowing for precise monitoring of behavioral patterns. Feature extraction is performed using ResNet50, capturing detailed spatial characteristics of the detected cattle. These features are then organized into sequences to prepare them for temporal analysis. Finally, Custom Long Short-Term Memory (CLSTM) network is used for classification, leveraging the sequential nature of the data to predict the onset of calving with high accuracy. Our classification approach achieved an average accuracy of 94.88%. Our findings indicate promising performance from our CLSTM algorithm, accurately forecasting the remaining 3 h before calving. Through a comprehensive exploration of data collection, pre-processing, and feature engineering, our research paper establishes the foundation for training an accurate behavior model to predict calving time. Predicting calving using traditional, manual methods like observing breeding records and visual cues is complex and prone to errors, with even experts sometimes failing to make accurate predictions. Additionally, manual prediction becomes impractical and costly as farm size increases. Our automated system demonstrated a significant improvement in prediction accuracy, reducing false positives and providing timely alerts. Our proposed method demonstrates significant potential for improving the precision and reliability of calving time predictions, offering valuable insights for farm management and veterinary care.

    DOI: 10.1007/978-981-96-1531-5_15

    Scopus

  • A Mathematical Framework for Reinforcement Learning in Healthcare: Modeling and Analysis in Artificial Intelligence 査読あり 国際誌

    Cho Nilar Phyo,Thi Thi Zin, H. Hama, Pyke Tin

    Lecture Notes in Electrical Engineering   1321 LNEE   54 - 62   2025年2月

     詳細を見る

    担当区分:責任著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:Lecture Notes in Electrical Engineering  

    A Reinforcement Learning, a pivotal component of artificial intelligence, is employed by computers to learn intelligently. This study delves into the application of a significant mathematical concept, the Markov Decision Process (MDP), within the realm of Reinforcement Learning. The primary focus lies in the development of a proficient computer program designed to tackle healthcare issues. The proposed approach consists of two key elements: a unique decision-making framework and intelligent learning mechanisms. This process of combining two elements is leveraged to analyze patient information and ascertain optimal choices. Conceptualizing a patient’s healthcare journey as distinct states—such as physician visits (O), hospitalization (H), intensive care (I), or mortality (D)—the research formulates a Markov Chain Model. This model quantifies the transition probabilities between these states. Additionally, an auxiliary model is constructed to gauge the efficacy of decisions, encompassing factors like risk assessment and potential medication outcomes. The effectiveness of the proposed model, termed the Markov Model with Reinforcement Learning, is evaluated using real-world patient data from electronic health records. Encouragingly, the model demonstrates proficiency in predicting forthcoming healthcare events. This underscores its utility in prognosticating future developments within the healthcare domain.

    DOI: 10.1007/978-981-96-1531-5_6

    Scopus

  • A Study on Health Management by Behavior Analysis of Calves 査読あり 国際誌

    T. Nishiyama, S. Kazuhisa, M. Aikawa, I. Kobayashi, Thi Thi Zin

    Lecture Notes in Electrical Engineering   1322 LNEE   144 - 151   2025年2月

     詳細を見る

    担当区分:最終著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:Lecture Notes in Electrical Engineering  

    It is important to always monitor the health of cattle, especially calves, and the frequency of observation increases with environmental changes in addition to once a day. In addition, calves tend to be more susceptible to infectious diseases because of their immature immune systems. Therefore, rearing management is extremely important. And the number of dairy cattle-keeping households and the total number of cattle are decreasing, while the number of cattle per household is increasing, indicating that management is becoming larger in scale. In this study, we proposed the development of a health management system by analyzing calf behavior using a 3D camera. Experiments were conducted at the Sumiyoshi Field of Miyazaki University to confirm the effectiveness of the proposed method.

    DOI: 10.1007/978-981-96-1535-3_16

    Scopus

全件表示 >>

書籍等出版物 【 表示 / 非表示

MISC 【 表示 / 非表示

  • Preface 国際共著

    Pan J.S., Thi Thi Zin, Sung T.W., Lin J.C.W.

    Lecture Notes in Electrical Engineering   1322 LNEE   v - vii   2025年

     詳細を見る

    担当区分:責任著者   記述言語:英語   掲載種別:速報,短報,研究ノート等(学術雑誌)   出版者・発行元:Lecture Notes in Electrical Engineering  

    Scopus

  • RGBカメラによって観測された運動症状を用いた パーキンソン病、本態性振戦の鑑別可能性に関する研究

    林田 高典, Thi Thi Zin, 杉山 崇史,酒井 克也,石井 信之,望月 仁志

    第 35 回バイオメディカル・ファジィ・システム学会年次大会 講演論文集 (BMFSA2022)   2022年12月

     詳細を見る

    担当区分:責任著者   記述言語:日本語   掲載種別:研究発表ペーパー・要旨(全国大会,その他学術会議)   出版者・発行元:バイオメディカル・ファジィ・システム学会  

  • Artificial Intelligence Topping on Spectral Analysis for Lameness Detection in Dairy Cattle

    Thi Thi Zin, Ye Htet, San Chain Tun and Pyke Tin

    第 35 回バイオメディカル・ファジィ・システム学会年次大会 講演論文集 (BMFSA2022)   2022年12月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究発表ペーパー・要旨(全国大会,その他学術会議)   出版者・発行元:バイオメディカル・ファジィ・システム学会  

  • Tracking A Group of Black Cows Using SORT based Tracking Algorithm

    Cho Cho Aye, Thi Thi Zin, M. Aikawa, I. Kobayashi

    第 35 回バイオメディカル・ファジィ・システム学会年次大会 講演論文集 (BMFSA2022)   2022年12月

     詳細を見る

    担当区分:責任著者   記述言語:英語   掲載種別:研究発表ペーパー・要旨(全国大会,その他学術会議)   出版者・発行元:バイオメディカル・ファジィ・システム学会  

  • Introduction to IEEE LifeTech 2022 Overview 招待あり 国際共著

    Thi Thi Zin and Ryota Nishimura

    IEEE LifeTech2022 Abstract Book   2022年3月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究発表ペーパー・要旨(国際会議)   出版者・発行元:IEEE CT Soc  

    DOI: 10.1109/LifeTech53646.2022.9754806

    Scopus

全件表示 >>

講演・口頭発表等 【 表示 / 非表示

  • Advanced Multimodal Analysis of Black Cattle Mounting Behavior Using YOLO and Open-World Object Detection Techniques 国際会議

    Su Myat Noe, Thi Thi Zin, Pyke Tin, and I. Kobayashi

    2025 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing (NCSP'24)  2025年3月2日 

     詳細を見る

    開催年月日: 2025年2月27日 - 2025年3月2日

    記述言語:英語   会議種別:口頭発表(一般)  

  • A Markovian Queueing Model for Internet of Things 国際会議

    Pyke Tin, Thi Thi Zin, H. Hama

    2025 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing (NCSP'24)  2025年3月2日 

     詳細を見る

    開催年月日: 2025年2月27日 - 2025年3月2日

    記述言語:英語   会議種別:口頭発表(一般)  

  • Vision-Based Person Re-Identification Through Gait Recognition Using Long Short-Term Memory 国際会議

    Cho Nilar Phyo, R. Tanno, Thi Thi Zin, Pyke Tin

    2025 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing (NCSP'24)  2025年3月2日 

     詳細を見る

    開催年月日: 2025年2月27日 - 2025年3月2日

    記述言語:英語   会議種別:口頭発表(一般)  

  • Quantifying Elderly Walking States Using Keypoint Data from OpenPose and Image Processing 国際会議

    R. Tanno, Cho Nilar Phyo and Thi Thi Zin

    2025 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing (NCSP'24)  2025年3月2日 

     詳細を見る

    開催年月日: 2025年2月27日 - 2025年3月2日

    記述言語:英語   会議種別:口頭発表(一般)  

  • マハラノビス距離を用いた胎児心拍変動の定量的評価とpH分類

    Tunn Cho Lwin, Thi Thi Zin, Pyke Tin, 紀 愛美, 池ノ上 克

    第26回日本知能情報ファジィ学会九州支部学術講演会  2024年12月21日 

     詳細を見る

    開催年月日: 2024年12月21日 - 2024年12月22日

    記述言語:英語   会議種別:口頭発表(一般)  

全件表示 >>

受賞 【 表示 / 非表示

  • 学生優秀講演賞

    2024年12月   SOFT九州支部【学会名】第26回日本知能情報ファジィ学会九州支部学術講演会   マハラノビス距離を用いた胎児心拍変動の定量的評価とpH分類

    Tunn Cho Lwin, Thi Thi Zin, Pyke Tin, 紀 愛美, 池ノ上 克

     詳細を見る

    受賞区分:国内学会・会議・シンポジウム等の賞  受賞国:日本国

  • 学生優秀講演賞

    2024年12月   SOFT九州支部【学会名】第26回日本知能情報ファジィ学会九州支部学術講演会   軽量なPointNet++モデルを用いたカラー点群に基づく牛識別システム

    Pyae Phyo Kyaw, Thi Thi Zin, Pyke Tin, 相川 勝, 小林 郁雄

     詳細を見る

    受賞区分:国内学会・会議・シンポジウム等の賞  受賞国:日本国

  • Best Presentation Award

    2024年9月   18th International Conference on Innovative Computing, Information and Control (ICICIC2024)   Integrating Entropy Measures of Fetal Heart Rate Variability with Digital Twin Technology to Enhance Fetal Monitoring

    Tunn Cho Lwin, Thi Thi Zin, Pyae Phyo Kyaw, Pyke Tin, E. Kino and T. Ikenoue

     詳細を見る

    受賞区分:国際学会・会議・シンポジウム等の賞  受賞国:中華人民共和国

  • Best Paper Award

    2024年9月   6TH IEEE MASS WORKSHOP ON SMART LIVING WITH IOT, CLOUD, AND EDGE COMPUTING ( COLOCATED WITH IEEE MASS 2024)   Analyzing Parameter Patterns in YOLOv5-based Elderly Person Detection Across Variations of Data

    Ye Htet, Thi Thi Zin, Pyke Tin, H. Tamura, K. Kondo, S. Watanabe, E. Chosa

     詳細を見る

    受賞区分:国際学会・会議・シンポジウム等の賞 

  • Best Paper Award

    2024年8月   The 16th International Conference on Genetic and Evolutionary Computing (ICGEC-2024)   From Vision to Vocabulary: A Multimodal Approach to Detect and Track Black CAttle Behaviors

    Su Myat Noe, Thi Thi Zin, Pyke Tin and I. Kobayashi

     詳細を見る

    受賞区分:国際学会・会議・シンポジウム等の賞  受賞国:日本国

全件表示 >>

科研費(文科省・学振・厚労省)獲得実績 【 表示 / 非表示

  • AIと画像データ解析を活用した牛の摂食行動モニタリングによる持続可能な酪農の実現

    研究課題/領域番号:25K15158  2025年04月 - 2028年03月

    独立行政法人日本学術振興会  科学研究費補助金  基盤研究(C)(一般)

     詳細を見る

    担当区分:研究代表者 

     畜産は全国農業総生産額の3 割以上を占める重要な産業であるが、不適切な家畜管理による生産性の低下が大きな問題となっている。その主たる原因は飼養形態の変化による1 頭あたり観察時間の短縮であり、飼養頭数の多頭化・農家の高齢化が進む畜産現場において、365 日24 時間にわたり家畜の異常や変化を観察し続けることは困難である。
     申請者らは、主に非接触・非侵襲センサ情報のアルゴリズム解析技術に着目し、距離画像とビデオ画像を用いて牛の発情を検知できる独自アルゴリズムの開発に取り組んできた。本研究では、これらの技術を応用することで、牛の発情や分娩監視時の異常を自動検知できる省力的な24 時間
    家畜管理システムを開発する。

  • 牛の分娩監視システムに関する研究

    研究課題/領域番号:18J14542  2018年04月 - 2020年03月

    科学研究費補助金  特別研究員奨励費

    須見 公祐、Thi Thi Zin(受入研究者)

     詳細を見る

    担当区分:研究分担者 

    精度や耐久性が不十分な割に高価なウェラブル型センサの装着や、肉体的・精神的に大きな負担を強いられる目視によるカメラ映像のモニタリング等は、大規模化する畜産現場において現実的なコストで利用できるものが極めて少ない。そこで本研究では、監視カメラから得られる映像を用いて非接触型の分娩管理システムを開発することで、農家そして牛、両方の負担を減らすことを目的とする。
    本来、牛は牛群と呼ばれるグループで行動を行う。そして、分娩が間近になると分娩室という分娩専用の牛舎に移される。分娩室には2 頭以上を同時に入れるケースも多く、どの牛で分娩が始まったかを識別する必要があることから、個体識別と追跡処理が必要となる。次に、分娩行動の段階を追って検知を行う。抽出する特徴としては、尻尾が上がっているかどうか、牛が立っているか座っているか、落ち着きがなくなり移動量が増加するか、子牛を出産したかどうか、親牛が子牛を舐めているかどうかなど、それぞれの過程で自動的に異常を見つけ通報を行うアルゴリズムの開発を進める。分娩行動が起きたかどうかの判断は、これらのデータから各特徴の重要度(重み)を学習させることによって行う。そして、最終目標として難産など異常行動の検知を行うために事例を蓄積しながら知識ベースを充実させ、異常事態の検知を行い、分娩の各段階を監視して異常事態の検知ならびに通報が可能なシステムの開発を目指す。

  • 画像処理技術と非接触センサを用いた牛の発情検知及び分娩監視システムの開発

    研究課題/領域番号:17K08066  2017年04月 - 2021年03月

    科学研究費補助金  基盤研究(C)

     詳細を見る

    担当区分:研究代表者 

     畜産は全国農業総生産額の3 割以上を占める重要な産業であるが、不適切な家畜管理による生産性の低下が大きな問題となっている。その主たる原因は飼養形態の変化による1 頭あたり観察時間の短縮であり、飼養頭数の多頭化・農家の高齢化が進む畜産現場において、365 日24 時間にわたり家畜の異常や変化を観察し続けることは困難である。
     申請者らは、主に非接触・非侵襲センサ情報のアルゴリズム解析技術に着目し、距離画像とビデオ画像を用いて牛の発情を検知できる独自アルゴリズムの開発に取り組んできた。本研究では、これらの技術を応用することで、牛の発情や分娩監視時の異常を自動検知できる省力的な24 時間
    家畜管理システムを開発する。

  • 特徴対応異種画像統合法を用いた個人特定法医画像診断法の開発

    研究課題/領域番号:15K15457  2015年04月 - 2018年03月

    科学研究費補助金  挑戦的萌芽研究

     詳細を見る

    担当区分:研究分担者 

     本研究は、災害や事件・事故における損傷の激しい遺体の身元確認において、迅速かつ高精度で個人を特定し得る「法医放射線画像コンピューター支援システム」の構築・整備を最終目標とするものである。骨の描出に優れた「X線画像診断」と「死後画像診断(Ai)」の連携に着眼し、身元確認困難な遺体の個人特定を、顔認識機能に代表される特徴対応異種画像統合法を駆使して行う挑戦的萌芽研究である。本法による個人特定は、我が国が直面する大震災や津波災害・山火事・噴火災害や重大事件・事故時において遺族の精神的負担軽減や財政的課題にも大いに寄与すると期待され切に望まれるものでもあり、まさに我が国が抱える課題の解決につながる実践的事業の一翼を強力に推進するものであると確信する。

  • 画像処理技術を用いた双方向授業システムの研究

    研究課題/領域番号:15K01041  2015年04月 - 2018年03月

    科学研究費補助金  基盤研究(C)

     詳細を見る

    担当区分:研究分担者 

     教員から学生への一方向の知識伝達に偏りがちな一斉授業において、教員と学生のコミュニケーションを促進するために、画像処理技術を用いた双方向授業システムの研究を行う。教員の質問に対して回答に対応するカードを学生に挙げさせた風景画像から、学生が挙げたカードの位置、種類、数を自動認識して、教員にフィードバックする機能と授業における活用の研究を行う。平成24~26年度科研費・挑戦的萌芽研究「一斉授業の双方向コミュニケーションを活性化させるための画像処理技術の研究」の研究成果である試作システムの認識精度を向上するとともに、一斉授業への活用方式の確立を図る。カメラとPCとカードのみからなる簡便な設備により、いつでもどこでも教員と学生の双方向コミュニケーションを促進する授業システムを研究する。

全件表示 >>

その他競争的資金獲得実績 【 表示 / 非表示

  • 次世代AI及びIoT分野で活躍できる優秀な人材育成プログラムと研究交流 国際共著

    2021年12月 - 2022年03月

    JST  さくらサイエンス 

    Thi Thi Zin

     詳細を見る

    担当区分:研究代表者 

  • 「魚介類の疾病予防のための画像解析技術の開発」 -水産学と工学の融合による新たな技術の創出- 国際共著

    2021年12月 - 2022年03月

    JST  さくらサイエンス 

    Thi Thi Zin

     詳細を見る

    担当区分:研究代表者 

  • 途上国の子供たちが読み書き計算を学ぶための、AI 技術と動画自動生成 技術を有する基礎教育タブレット「Ta-BE(タビー)」の開発

    2018年06月 - 2021年02月

    経済産業省  戦略的基盤技術高度化支援事業(サポイン事業) 

    (株)教育情報サービス、宮崎大学工学部 Thi Thi Zin

     詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

     開発途上国には、良質な教育にアクセスできない子供たちが数多くいる。これを踏まえ、2015年国連本部 において採択された「2030アジェンダ」の目標の一つに、「すべての人に包摂的かつ公正な質の高い教育を 確保する」とある。これを背景に、AI技術を活用した音声・画像認識機能を用いて、学習者の教育レベルを認 識・分析し、AI自体がその学習者に特化した解説動画を自動で生成する基礎的な教育用タブレットを開発する。

  • 地域の特色を考慮した高齢者のQOL向上と自立生活を支援するための要素技術開発

    2014年04月 - 2015年03月

    「地(知)の拠点整備事業(大学COC事業)」  「地(知)の拠点整備事業(大学COC事業)」 

     詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    超高齢社会の到来に伴って色々な社会問題(医療、年金、介護・福祉等の負担増、雇用創出、労働力確保)が派生しており、行政、地域、医療、介護、技術が一体となって取組む必要がある。このような時代背景の下で、宮崎県の地域特色を考慮した高齢者のQOL(生活の質)向上と自立生活を支援するための見守りシステム構築に必要な要素技術開発を行う。
    2013年の宮崎県の高齢化率は26.7%で国の平均24.1%を上回っており、今後も進んでいくと推定されている(内閣府「高齢社会白書」)。ここでは地域の特色を考慮に入れたコミュニティ造りが重要であると同時に自立生活を支援する見守りシステム構築も不可欠である。問題解決に向けて、ICTの側面から貢献できることはたくさんあり、本提案研究では、薬の誤服用や飲み忘れを防止する薬管理システム構築のための要素技術を開発し、自立生活を支援すると同時に、介護や見守り現場でのスタッフの負担軽減を目指す。

受託研究受入実績 【 表示 / 非表示

  • ものづくり現場におけるIoT技術を活用した作業効率向上に関する研究

    2021年04月 - 2022年03月

    宮崎県工業技術センター  一般受託研究 

    Thi Thi Zin

     詳細を見る

    担当区分:研究分担者  受託研究区分:一般受託研究

  • ものづくり現場におけるIoT技術を活用した作業効率向上に関する研究

    2020年06月 - 2021年03月

    宮崎県工業技術センター  一般受託研究 

    田村 宏樹、Thi Thi Zin

     詳細を見る

    担当区分:研究分担者  受託研究区分:一般受託研究

  • JST :日本・アジア青少年サイエンス交流事業

    2019年04月 - 2020年03月

    一般受託研究 

     詳細を見る

    担当区分:研究代表者  受託研究区分:一般受託研究

    さくらサイエンスプラン:「科学技術研修コース」(Cコース)
    次世代AI及びIoTの分野で活躍できる優秀な人材育成プログラムと研究交流

  • JST :日本・アジア青少年サイエンス交流事業

    2018年06月 - 2018年10月

    一般受託研究 

     詳細を見る

    担当区分:研究代表者  受託研究区分:一般受託研究

    さくらサイエンスプラン:「科学技術研修コース」(Cコース)
    ミャンマーの優秀な学生を対象にした、日本の最先端 ICTと各種分野における学際研究の技術移転と研究交流

  • ICTを活用した牛のモニタリングシステムの開発に関する研究

    2018年04月 - 2020年03月

    総務省  一般受託研究 

     詳細を見る

    担当区分:研究代表者  受託研究区分:一般受託研究

    戦略的情報通信研究開発推進事業(SCOPE)
    地域ICT振興型研究開発(フェーズII)
     高齢化、大規模化する現代の畜産で、24 時間365 日にわたり家畜の健康管理を適切に行い、異常や変化に留意し続けながら経営を継続することは容易でない。 本研究では、ICTを活用して牛の健康状態の重要な指標となるBCS(ボディコンディションスコア)の省力的な評価方法を開発するとともに、母牛の発情行動や分娩時異常行動を非接触センサにより自動検知して農場管理者に知らせることにより、健康管理、分娩介助や診療、人工授精をタイミングよく行い、効率的な家畜生産性の向上につなげていく。 また、ベースとなる個体識別や追跡技術を開発していく。

全件表示 >>

共同研究実施実績 【 表示 / 非表示

  • AIによる乳牛健康管理システム開発事業

    2024年05月 - 2026年08月

    ホクレン農業協同組合連合会  国内共同研究 

     詳細を見る

    担当区分:研究代表者  共同研究区分:国内共同研究

研究・技術シーズ 【 表示 / 非表示