HIRAYAMA Hiroyuki

写真a

Affiliation

Faculty of Education Mathematics education

Title

Associate Professor

External Link

Degree 【 display / non-display

  • 博士(数理学) ( 2014.3   名古屋大学 )

Research Areas 【 display / non-display

  • Natural Science / Mathematical analysis  / Partial differential equations

 

Papers 【 display / non-display

  • Results of existence and uniqueness for the Cauchy problem of semilinear heat equations on stratified Lie groups Reviewed

    Hiroyuki Hirayama and Yasuyuki Oka

    Journal of Differential Equations   412   214 - 249   2024.12

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Journal of Differential Equations  

    The aim of this paper is to give existence and uniqueness results for solutions of the Cauchy problem for semilinear heat equations on stratified Lie groups G with the homogeneous dimension N. We consider the nonlinear function behaves like |u|α or |u|α−1u (α>1) and the initial data u0 belongs to the Sobolev spaces Lsp(G) for 1<p<∞ and 0<s<N/p. Since stratified Lie groups G include the Euclidean space Rn as an example, our results are an extension of the existence and uniqueness results obtained by F. Ribaud on Rn to G. It should be noted that our proof is very different from it given by Ribaud on Rn. We adopt the generalized fractional chain rule on G to obtain the estimate for the nonlinear term, which is very different from the paracomposition technique adopted by Ribaud on Rn. By using the generalized fractional chain rule on G, we can avoid the discussion of Fourier analysis on G and make the proof more simple.

    DOI: 10.1016/j.jde.2024.08.027

    Scopus

  • Optimal decay estimate and asymptotic profile for solutions to the generalized Zakharov–Kuznetsov–Burgers equation in 2D Reviewed

    Ikki Fukuda, Hiroyuki Hirayama

    Nonlinear Analysis: Real World Applications   79   2024.10

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Nonlinear Analysis: Real World Applications  

    We consider the Cauchy problem for the generalized Zakharov–Kuznetsov–Burgers equation in 2D. This is one of the nonlinear dispersive–dissipative equations, which has a spatial anisotropic dissipative term −μuxx. In this paper, we prove that the solution to this problem decays at the rate of [Formula presented] in the L∞-sense, provided that the initial data u0(x,y) satisfies u0∈L1(R2) and some appropriate regularity assumptions. Moreover, we investigate the more detailed large time behavior and obtain a lower bound of the L∞-norm of the solution. As a result, we prove that the given decay rate [Formula presented] of the solution to be optimal. Furthermore, combining the techniques used for the parabolic equations and for the Schrödinger equation, we derive the explicit asymptotic profile for the solution.

    DOI: 10.1016/j.nonrwa.2024.104130

    Scopus

  • Variational problems for the system of nonlinear Schrödinger equations with derivative nonlinearities Reviewed

    Hiroyuki Hirayama, Masahiro Ikeda

    Calculus of Variations and Partial Differential Equations   63 ( 7 )   2024.9

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Calculus of Variations and Partial Differential Equations  

    We consider the Cauchy problem of the system of nonlinear Schrödinger equations with derivative nonlinearlity. This system was introduced by Colin and Colin (Differ Int Equ 17:297–330, 2004) as a model of laser-plasma interactions. We study existence of ground state solutions and the global well-posedness of this system by using the variational methods. We also consider the stability of traveling waves for this system. These problems are proposed by Colin–Colin as the open problems. We give a subset of the ground-states set which satisfies the condition of stability. In particular, we prove the stability of the set of traveling waves with small speed for 1-dimension.

    DOI: 10.1007/s00526-024-02782-w

    Scopus

  • Sharp well-posedness for the Cauchy problem of the two dimensional quadratic nonlinear Schrödinger equation with angular regularity Reviewed

    Hiroyuki Hirayama, Shinya Kinoshita, Mamoru Okamoto

    Journal of Differential Equations   234   2024.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1016/j.jde.2024.02.037

  • Existence and uniqueness for the Cauchy problem of semilinear heat equations on stratified Lie groups in the critical Sobolev space Reviewed

    Hiroyuki Hirayama and Yasuyuki Oka

    Taiwanese J. Math. Advance Publication   1 - 21   2024

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.11650/tjm/240604

display all >>

Books 【 display / non-display

  • 工科系のための偏微分方程式入門

    岡 康之, 平山 浩之, 鈴木 俊夫, 藤ノ木 健介( Role: Joint author)

    学術図書出版社  2023.3 

     More details

    Book type:Scholarly book

MISC 【 display / non-display

  • 微分型非線形シュレディンガー方程式系のほとんど最良なソボレフ空間における適切性について Invited

    平山 浩之

    第60回 実函数論・函数解析学合同シンポジウム 講演集   34 - 53   2021.9

     More details

    Language:Japanese  

  • Well-posedness for a system of quadratic derivative nonlinear Schr¨odinger equations with periodic initial data at the scaling critical regularity

    平山 浩之

    第5 回白浜研究集会報告集   99 - 108   2014.2

     More details

    Language:Japanese  

  • トーラス上の高階次分散型方程式の時間局所適切性について

    平山 浩之

    第31 回発展方程式若手セミナー 報告集   223 - 236   2009.12

     More details

    Language:Japanese  

Presentations 【 display / non-display

  • Variational problems for the system of nonlinear Schrodinger equations with quadratic derivative nonlinearities Invited

    平山 浩之

    Takamatsu Workshop on Differential Equations and Related Topics 

     More details

    Event date: 2024.3.26 - 2024.3.27

    Presentation type:Oral presentation (general)  

  • 一般化 Zakharov–Kuznetsov–Burgers 方程式の初期値問題の解の長時間挙動と最良な減衰評価について

    福田 一貴, 平山 浩之

    日本数学会2023年度秋季総合分科会  (中央大学)  2023.3.17 

     More details

    Event date: 2023.9.20 - 2023.9.23

    Presentation type:Oral presentation (general)  

    Venue:中央大学  

  • Existence and stability of the ground states to the system of nonlinear Schrodinger equations with derivative nonlinearity Invited

    平山 浩之

    応用解析研究会 

     More details

    Event date: 2023.5.27

    Presentation type:Oral presentation (general)  

  • Large time behavior and optimal decay estimate for solutions to the generalized KP-Burgers equation Invited

    平山 浩之

    NLPDEセミナー 

     More details

    Event date: 2023.5.26

    Presentation type:Oral presentation (general)  

  • Existence and stability of the ground states to the system of nonlinear Schrodinger equations with derivative nonlinearity Invited

    平山 浩之

    九州関数方程式セミナー 

     More details

    Event date: 2023.5.19

    Presentation type:Oral presentation (general)  

display all >>

Awards 【 display / non-display

  • Outstanding Contribution in Reviewing

    2018.7   ELSEVIER Nonlinear Analysis  

    Hiroyuki Hirayama

     More details

    Award type:Honored in official journal of a scientific society, scientific journal  Country:Japan

Grant-in-Aid for Scientific Research 【 display / non-display

  • パラメーターを含む非線形分散型方程式の連立系に対する時間大域的可解性について

    Grant number:21K13825  2021.04 - 2025.03

    独立行政法人日本学術振興会  科学研究費補助金  若手研究

      More details

    Authorship:Principal investigator 

  • Lie 群構造をもつ非線形発展方程式の可解性の解明

    Grant number:21K03333  2021.04 - 2024.03

    独立行政法人日本学術振興会  科学研究費補助金   基盤研究(C)

      More details

    Authorship:Coinvestigator(s) 

  • 複雑な共鳴構造を持つ非線形分散型方程式の可解性について

    Grant number:17K14220  2017.04 - 2023.03

    科学研究費補助金  若手研究(B)

      More details

    Authorship:Principal investigator 

  • 臨界指数のソボレフ空間における非線型分散型方程式の適切性の解明

    Grant number:14J00069  2014.04 - 2015.10

    科学研究費補助金  特別研究員奨励費

      More details

    Authorship:Principal investigator 

Other research activities 【 display / non-display

  • 第7回 PDE Workshop in Miyazaki

    2024.01

     More details

    研究集会「第7回 PDE Workshop in Miyazaki」を開催した。
    https://www.cc.miyazaki-u.ac.jp/pde/

  • 数学と現象:Mathematics and Phenomena in Miyazaki 2023

    2023.11

     More details

    研究集会「数学と現象:Mathematics and Phenomena in Miyazaki 2023」の世話人を行った。
    https://www.cc.miyazaki-u.ac.jp/math/mpm/mpm2023/

  • 第4回 大同大学 若手微分方程式セミナー

    2023.08

     More details

    研究集会「第4回 大同大学 若手微分方程式セミナー」を開催した。
    https://sites.google.com/view/daidowrks

  • 第6回 PDE Workshop in Miyazaki

    2023.01

     More details

    研究集会「第6回 PDE Workshop in Miyazaki」を開催した。
    https://www.cc.miyazaki-u.ac.jp/pde/

  • 第3回 大同大学 若手微分方程式セミナー

    2022.08

     More details

    研究集会「第3回 大同大学 若手微分方程式セミナー」を開催した。
    https://www.daido-news.jp/du_news/notice/2986.html

display all >>