Papers - YAMAGUCHI Naoya
-
3つの大学で連携したデータサイエンスPBL科目の取り組みレベルの異なる学生の協働した活動を活用して Reviewed
藤井良宜, 堀部典子, 山口尚哉, 川野秀一, 小谷久寿, 溝口佳寛
科学教育研究 2025.6
Language:Japanese Publishing type:Research paper (scientific journal)
-
数学的活動を自ら遂行する児童・生徒の育成にむけた 学習指導に関する研究 (3)
木根主税, 添田佳伸, 下田紗也夏, 前田貴宏, 中村健太, 平山浩之, 山口尚哉, 向江頼士, 松田奈緒子, 齊藤正行, 橋田浩幸, 谷口朝哉, 矢野雄大, 中武美由紀
宮崎大学教育学部附属教育協働開発センター研究紀要 33 51 - 66 2025.3
Language:Japanese Publishing type:Research paper (bulletin of university, research institution)
-
Integer group determinants for abelian groups of order 16 Reviewed
Yamaguchi Y., Yamaguchi N.
Hiroshima Mathematical Journal 54 ( 3 ) 359 - 373 2024.11
Authorship:Corresponding author Publishing type:Research paper (scientific journal) Publisher:Hiroshima Mathematical Journal
For any positive integer n, let Cn be the cyclic group of order n. We determine all possible values of the integer group determinant of C4 × C22, which is the only unsolved abelian group of order 16.
DOI: 10.32917/h2023012
-
Wolstenholme primes and group determinants of cyclic groups Reviewed International coauthorship
Cid REYES-BUSTOS, Naoya YAMAGUCHI, Yuka YAMAGUCHI
Proceedings of the Japan Academy. Series. A, Mathematical sciences / issued by 日本学士院 100 ( 9 ) 51 - 55 2024.11
Authorship:Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:Tokyo : Japan Academy
-
Generalized Dedekind's theorem and its application to integer group determinants Reviewed
Yamaguchi Naoya, Yamaguchi Yuka
Journal of the Mathematical Society of Japan 76 ( 4 ) 1123 - 1138 2024.10
Authorship:Lead author Language:English Publishing type:Research paper (scientific journal) Publisher:The Mathematical Society of Japan
In this paper, we give a refinement of a generalized Dedekind's theorem. In addition, we show that all possible values of integer group determinants of any group are also possible values of integer group determinants of its any abelian subgroup. By applying the refinement of a generalized Dedekind's theorem, we determine all possible values of integer group determinants of the direct product group of the cyclic group of order 8 and the cyclic group of order 2.
-
Proof of the Infinity of Pythagorean Primes via Barning's Matrix
山口 尚哉, 山口由佳
宮崎大学教育学部紀要 103 1 - 3 2024.9
Authorship:Lead author Language:English Publishing type:Research paper (bulletin of university, research institution) Publisher:宮崎大学教育学部
We give a proof of the infinity of Pythagorean primes by using Barning's matrix. Our proof is based on the Saidak's method for the proof of Euclid's theorem.
DOI: 10.34481/0002000780
-
Yamaguchi Naoya
103 4 - 5 2024.9
Authorship:Lead author, Corresponding author Language:Japanese Publishing type:Research paper (scientific journal)
DOI: 10.34481/0002000781
-
小売業態における数理統計の活用
納富崇, 山口尚哉
第31回技術・研究発表交流会 36 - 36 2024.9
Authorship:Last author Language:Japanese Publishing type:Research paper (other academic)
-
災害時における船舶の効果的な利用に向けて
山口尚哉, 湯地敏史, 佐々木克敬, 髙橋洋子
第31回技術・研究発表交流会 58 - 58 2024.9
Authorship:Lead author Language:Japanese Publishing type:Research paper (other academic)
-
Integer group determinants of order 16 Reviewed
Yuka Yamaguchi and Naoya Yamaguchi
Ramanujan Journal 65 ( 3 ) 1459 - 1474 2024.9
Authorship:Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:Ramanujan Journal
Let Cn and Qn denote the cyclic group and the generalized quaternion group of order n, respectively. We determine all possible values of the integer group determinants of C8⋊3C2 and Q8⋊C2, which are the unresolved groups of order 16 (Serrano, Paudel and Pinner also obtained a complete description of the integer group determinants of Q8⋊C2 independently of this paper and presented it a few days earlier than this paper). Also, we give a diagram of the set inclusion relations between the integer group determinants for all groups of order 16.
-
INTEGER GROUP DETERMINANTS FOR C_2^4 Reviewed
Yamaguchi Y., Yamaguchi N.
Integers 24 2024.3
Authorship:Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:Integers
We give a complete description of the integer group determinant for C24, where C4 is the cyclic group of order 4.
-
Integer group determinants for three of the non-abelian groups of order 16 Reviewed
Yuka Yamaguchi, Naoya Yamaguchi
Research in Number Theory 10 ( 2 ) 2024.3
Authorship:Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:Research in Number Theory
For any positive integer n, let Cn be the cyclic group of order n. We determine all possible values of the integer group determinants for the non-abelian groups C22⋊C4, C4⋊C4 and C8⋊5C2 of order 16.
-
REMARK ON LAQUER’S THEOREM FOR CIRCULANT DETERMINANTS Reviewed
Yamaguchi N., Yamaguchi Y.
International Journal of Group Theory 12 ( 4 ) 265 - 269 2023.12
Authorship:Lead author Language:English Publishing type:Research paper (scientific journal) Publisher:International Journal of Group Theory
Olga Taussky-Todd suggested the problem of determining the possible values of integer circulant determinants. To solve a special case of the problem, Laquer gave a factorization of circulant determinants. In this paper, we give a modest generalization of Laquer’s theorem. Also, we give an application of the generalization to integer group determinants.
-
Integer group determinants for C_{2}^{4} Reviewed
Yamaguchi Y., Yamaguchi N.
Ramanujan Journal 62 ( 4 ) 983 - 995 2023.12
Authorship:Last author, Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:Ramanujan Journal
We determine all possible values of the integer group determinant of C24 , where C 2 is the cyclic group of order 2.
-
Number of terms in the group determinant Reviewed
Yamaguchi N., Yamaguchi Y.
Examples and Counterexamples 3 2023.11
Authorship:Lead author Language:English Publishing type:Research paper (scientific journal) Publisher:Examples and Counterexamples
In this paper, we prove that when the number of terms in the group determinant of order odd prime p is divided by p, the remainder is 1. In addition, we give a table of the number of terms in kth power of the group determinant of the cyclic group of order n for n≤10 and k≤6, and also give a table of one for every group of order at most 15. These tables raise some questions for us about the number of terms in the group determinants.
-
非対称な損失の分散の不等式
山口尚哉, 山口由佳, 堀磨伊也
宮崎大学 研究・産学地域連携推進機構 第30回技術・研究発表交流会 第23回分析講演会 東九州メディカルバレーものづくりフェスタ2023 宮崎県産業振興機構事業成果報告 60 - 60 2023.9
Language:Japanese Publishing type:Research paper (conference, symposium, etc.)
-
INEQUALITY FOR THE VARIANCE OF AN ASYMMETRIC LOSS Reviewed
Yamaguchi N., Yamaguchi Y., Hori M.
Journal of Mathematical Inequalities 17 ( 3 ) 909 - 913 2023.9
Authorship:Lead author Language:English Publishing type:Research paper (scientific journal) Publisher:Journal of Mathematical Inequalities
We assume that the forecast error follows a probability distribution which is symmetric and monotonically non-increasing on non-negative real numbers, and if there is a mismatch between observed and predicted value, then we suffer a loss. Under the assumptions, we solve a minimization problem with an asymmetric loss function. In addition, we give an inequality for the variance of the loss.
-
Integer circulant determinants of order 16 Reviewed
61 ( 4 ) 1283 - 1294 2023.8
Authorship:Corresponding author Language:English Publishing type:Research paper (scientific journal)
-
Kinone Chikara, Soeda Yoshinobu, Murata Shoko, Nagatomo Syotaro, Fujii Yoshinori, Hirayama Hiroyuki, Yamaguchi Naoya, Kurogi Syuichi, Hashida Hiroyuki, Taniguchi Tomoya, Maeda Takahiro, Matsuda Naoko, Yano Yudai
Journal of the Center for Collaboration and Development in Educational Practice and Management, University of Miyazaki 31 43 - 56 2023.3
Language:Japanese Publishing type:Research paper (bulletin of university, research institution)
-
電力取引支援装置及び電力取引支援方法
山口尚哉, 山口由佳, 堀磨伊也, 出口喜也, 西井龍映
宮崎大学 産学・地域連携センター 第29回技術・研究発表交流会 第22回分析講演会 72 - 73 2022.9
Authorship:Lead author, Corresponding author Language:Japanese Publishing type:Research paper (conference, symposium, etc.)