Papers - MIURA Ayako
-
The NERP-4–SNAT2 axis regulates pancreatic β-cell maintenance and function Reviewed International coauthorship
Weidong Zhang, Ayako Miura, Md Moin Abu Saleh, Koichiro Shimizu, Yuichiro Mita, Ryota Tanida, Satoshi Hirako, Seiji Shioda, ValeryGmyr, Julie Kerr-Conte, Francois Pattou,Chunhuan Jin, Yoshikatsu Kanai, Kazuki Sasaki, Naoto Minamino, Hideyuki Sakoda & Masamitsu Nakazato
Nature Communications 14 ( 8158 ) 2023.12
Authorship:Lead author Language:English Publishing type:Research paper (scientific journal)
-
Reversible neuropathic pain model created by long-term optogenetic nociceptor stimulation using light-responsive pain mice Reviewed
Satoshi Kouroki, Toyoaki Maruta, Kotaro Hidaka, Tomohiro Koshida, Mio Kurogi, Yohko Kage, Ayako Miura, Hikaru Nakagawa, Toshihiko Yanagita, Ryu Takeya, Isao Tsuneyoshi
PLOS ONE 2025.4
Language:English Publishing type:Research paper (scientific journal)
-
The expression of the formin Fhod3 in mouse tongue striated muscle Reviewed International coauthorship
Nakagawa Hikaru, Kage Yohko, Miura Ayako, Wahyu Sulistomo Hikmawan, Matsuyama Sho, Yamashita Yoshihiro, Takeya Ryu
Cell Structure and Function advpub ( 0 ) 111 - 122 2024.10
Language:English Publishing type:Research paper (scientific journal) Publisher:Japan Society for Cell Biology
The sarcomere is the contractile unit of striated muscle and is composed of actin and myosin filaments. There is increasing evidence to support that actin assembly mediated by Fhod3, a member of the formin family of proteins, is critical for sarcomere formation and maintenance in cardiac muscle. Fhod3, which is abundantly expressed in the heart, localizes to the center of sarcomeres and contributes to the regulation of the cardiac function, as evidenced by the fact that mutations in Fhod3 cause cardiomyopathy. However, the role of Fhod3 in skeletal muscle, another type of striated muscle, is unclear. We herein show that Fhod3 is expressed in the tongue at both mRNA and protein levels, although in smaller amounts than in the heart. To determine the physiological role of Fhod3 expressed in the tongue, we generated embryos lacking Fhod3 in the tongue. The tongue tissue of the Fhod3-depleted embryos did not show any significant structural defects, suggesting that Fhod3 is dispensable for normal development of the mouse tongue. Unexpectedly, the immunostaining analysis revealed the absence of specific sarcomeric signals for Fhod3 in the wild-type tongue when compared to the Fhod3-depleted tongue as a negative control, despite the use of antibodies that had previously been validated by immunostaining of heart tissues. Taken together, although Fhod3 protein is expressed at a significant level in the tongue, Fhod3 in the tongue does not appear to exhibit the same sarcomeric pattern as observed in the heart, suggesting a different role for Fhod3 in the tongue muscles.Key words: actin, formin, sarcomere, striated muscle
DOI: 10.1247/csf.24044
-
Maruta T., Kouroki S., Kurogi M., Hidaka K., Koshida T., Miura A., Nakagawa H., Yanagita T., Takeya R., Tsuneyoshi I.
Journal of Neuroscience Research 102 ( 10 ) 2024.10
Publishing type:Research paper (scientific journal) Publisher:Journal of Neuroscience Research
Voltage-gated sodium channels, including NaV1.7, NaV1.8, and NaV1.9, play important roles in pain transmission and chronic pain development. However, the specific mechanisms of their action remain unclear, highlighting the need for in vivo stimulation studies of these channels. Optogenetics, a novel technique for targeting the activation or inhibition of specific neural circuits using light, offers a promising solution. In our previous study, we used optogenetics to selectively excite NaV1.7-expressing neurons in the dorsal root ganglion of mice to induce nocifensive behavior. Here, we further characterize the impact of nocifensive behavior by activation of NaV1.7, NaV1.8, or NaV1.9-expressing neurons. Using CRISPR/Cas9-mediated homologous recombination, NaV1.7–iCre, NaV1.8–iCre, or NaV1.9–iCre mice expressing iCre recombinase under the control of the endogenous NaV1.7, NaV1.8, or NaV1.9 gene promoter were produced. These mice were then bred with channelrhodopsin-2 (ChR2) Cre–reporter Ai32 mice to obtain NaV1.7–ChR2, NaV1.8–ChR2, or NaV1.9–ChR2 mice. Blue light exposure triggered paw withdrawal in all mice, with the strongest response in NaV1.8–ChR2 mice. These light sensitivity differences observed across NaV1.x–ChR2 mice may be dependent on ChR2 expression or reflect the inherent disparities in their pain transmission roles. In conclusion, we have generated noninvasive pain models, with optically activated peripheral nociceptors. We believe that studies using optogenetics will further elucidate the role of sodium channel subtypes in pain transmission.
DOI: 10.1002/jnr.25386
-
The NERP-4–SNAT2 axis regulates pancreatic β-cell maintenance and function Reviewed
Zhang W., Miura A., Abu Saleh M.M., Shimizu K., Mita Y., Tanida R., Hirako S., Shioda S., Gmyr V., Kerr-Conte J., Pattou F., Jin C., Kanai Y., Sasaki K., Minamino N., Sakoda H., Nakazato M.
Nature Communications 14 ( 1 ) 2023.12
Publishing type:Research paper (scientific journal) Publisher:Nature Communications
Insulin secretion from pancreatic β cells is regulated by multiple stimuli, including nutrients, hormones, neuronal inputs, and local signalling. Amino acids modulate insulin secretion via amino acid transporters expressed on β cells. The granin protein VGF has dual roles in β cells: regulating secretory granule formation and functioning as a multiple peptide precursor. A VGF-derived peptide, neuroendocrine regulatory peptide-4 (NERP-4), increases Ca2+ influx in the pancreata of transgenic mice expressing apoaequorin, a Ca2+-induced bioluminescent protein complex. NERP-4 enhances glucose-stimulated insulin secretion from isolated human and mouse islets and β-cell–derived MIN6-K8 cells. NERP-4 administration reverses the impairment of β-cell maintenance and function in db/db mice by enhancing mitochondrial function and reducing metabolic stress. NERP-4 acts on sodium-coupled neutral amino acid transporter 2 (SNAT2), thereby increasing glutamine, alanine, and proline uptake into β cells and stimulating insulin secretion. SNAT2 deletion and inhibition abolish the protective effects of NERP-4 on β-cell maintenance. These findings demonstrate a novel autocrine mechanism of β-cell maintenance and function that is mediated by the peptide–amino acid transporter axis.
-
Matsuo A, Tanida R, Yanagi S, Tsubouchi H, Miura A, Shigekusa T, Matsumoto N, Nakazato M
European journal of pharmacology 892 173754 2021.2
Language:Japanese Publishing type:Research paper (scientific journal) Publisher:European Journal of Pharmacology
© 2020 The Authors Fibrotic scarring is an important prognostic factor of acute respiratory distress syndrome (ARDS). There are currently no antifibrotic drugs or other therapeutic agents for ARDS. Lysyl oxidase-like 2 (LOXL2), an amine oxidase, contributes to fibrotic scarring by facilitating collagen cross-linking. Recent clinical trials revealed that a monoclonal inhibitory antibody against LOXL2 failed to show benefit over placebo in patients with fibrotic disorders involving the lungs. These clinical results raise the possibility that targeting the extracellular enzymic activity of LOXL2 is not in itself sufficient to prevent fibrotic scarring. We investigated the role of LOXL2 in the pathogenesis of ARDS in vivo, in vitro, and in samples from patients with ARDS. After lung injury, LOXL2 was unevenly expressed in the nuclei of lung fibroblasts and myofibroblasts in the fibrotic phase. Nuclear LOXL2 expression was upregulated in lung fibroblasts after transforming growth factor-beta1 (TGF-β1)-treatment. LOXL2 silencing abrogated the TGF-β1-induced expression of a myofibrogenic-progenitor marker, the appearance of proto-myofibroblasts, and the evolution of differentiated myofibroblasts in lung fibroblasts. Nuclear upregulation of Snail was evident in myofibroblasts during the fibrotic phase after lung injury. We detected high levels of LOXL2 protein in the lungs of ARDS patients, specifically during the proliferative and fibrotic phases. Our results highlight nuclear LOXL2 in fibroblasts as a primary causative driver of cell-fate decision toward myofibroblasts and of the progression of fibrotic scarring. A nuclear-LOXL2-targeted agent could be a promising therapeutic strategy against fibrotic disorders including ARDS.
-
Ishii N, Tsubouchi H, Miura A, Yanagi S, Ueno H, Shiomi K, Nakazato M
European Journal of Pharmacology 819 35 - 42 2018.1
Language:English Publishing type:Research paper (scientific journal) Publisher:European Journal of Pharmacology
© 2017 Elsevier B.V. Paclitaxel is an effective chemotherapeutic agent, but has some treatment-limiting adverse effects that markedly decrease patients’ quality of life. Peripheral neuropathy is one of these, and no treatment for it has been established yet. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is secreted from the stomach and has widespread effects on multiple systems. We investigated the pharmacological potential of ghrelin in preventing paclitaxel-induced peripheral neuropathy using wild-type mice, ghrelin-null mice, and growth hormone secretagogue receptor-null mice. In wild-type mice, ghrelin administration alleviated mechanical and thermal hypersensitivity, and partially prevented neuronal loss of small unmyelinated intraepidermal nerve fibers but not large myelinated nerve fibers. Moreover, ghrelin administration decreased plasma oxidative and nitrosative stress and increased the expression of uncoupling protein 2 (UCP2) and superoxide dismutase 2 (SOD2) in the dorsal root ganglia, which are mitochondrial antioxidant proteins, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a regulator of mitochondrial number. Both ghrelin-null mice and growth hormone secretagogue receptor-null mice developed more severe nerve injuries than wild-type mice. Our results suggest that ghrelin administration exerts a protective effect against paclitaxel-induced neuropathy by reducing oxidative stress and enhancing mitochondrial anti-oxidant functions, and that endogenous ghrelin has a neuroprotective effect that is mediated by ghrelin/growth hormone secretagogue receptor signaling. Ghrelin could be a promising therapeutic agent for the management of this intractable disease.
-
Neuromedin U suppresses glucose-stimulated insulin secretion in pancreatic β cells Reviewed
Zhang W,Sakoda H,Miura A,Shimizu K,Mori K,Miyazato M,Takayama K,Hayashi Y,Nakazato M
Biochemical and Biophysical Research Communications 493 ( 1 ) 677 - 683 2017.11
Language:English Publishing type:Research paper (scientific journal) Publisher:Biochemical and Biophysical Research Communications
© 2017 The Authors Neuromedin U (NMU), a highly conserved peptide in mammals, is implicated in energy homeostasis and glycemic control, and may also be involved in the regulation of adipoinsular axis function. However, the role of NMU in regulating insulin secretion has not been clearly established. In this study, we investigated the role of NMU in the regulation of insulin secretion both in vitro and in vivo. We found that NMU and NMU receptor (NMUR) 1 were expressed in mouse islets and β cell-derived MIN6-K8 cells. In mice, NMU suppressed glucose-stimulated insulin secretion (GSIS) both in vitro and in vivo. Additionally, an NMUR1 agonist inhibited GSIS in both MIN6-K8 cells and mice islets. Moreover, NMU attenuated intracellular Ca2+ influx in MIN6-K8 cells, potentially causing a decrease in insulin secretion. siNmu-transfected MIN6-K8 cells showed elevated GSIS. Treatment with anti-NMU IgG increased GSIS in isolated mouse pancreatic islets. These results suggested that NMU can act directly on β cells through NMUR1 in an autocrine or paracrine fashion to suppress insulin secretion. Collectively, our results highlight the crucial role of NMU in suppressing pancreatic insulin secretion, and may improve our understanding of glucose homeostasis.
-
Shimizu K., Yonekawa T., Yoshida M., Miyazato M., Miura A., Sakoda H., Yamaguchi H., Nakazato M.
Journal of the Endocrine Society 1 ( 10 ) 1259 - 1271 2017.10
Language:English Publishing type:Research paper (scientific journal) Publisher:Journal of the Endocrine Society
© 2017 Endocrine Society. Context: Kisspeptin receptor (KISS1R) is expressed in hypothalamic gonadotropin-releasing hormone neurons and responsible for pubertal onset and reproductive functions. KISS1R mutations remain a rare cause of congenital hypogonadotropic hypogonadism (CHH). Objective: The aim of this study was to identify the genetic cause ofCHHin a patient and to functionally characterize a KISS1R mutation. Design: The patient was a 47-year-old Japanese man whose parents were first cousins. He lacked secondary sexual characteristics owing to normosmic CHH. Exon segments for the KISS1R gene in this patient were screened for mutations. Functional analyses were performed using HEK293 cells expressing KISS1R mutants. Molecular dynamics simulations were performed to compare the ligand- KISS1R mutant complex with those of wild-type KISS1R variants. Results: A homozygous mutation (c.440C > T, p.P147L) in KISS1R was identified. The P147L mutation did not affect either receptor expression level or subcellular localization in the recombinant expression system. Intracellular calcium measurements and cellular dielectric spectroscopy demonstrated that the P147L mutation impaired receptor function to an extent more severe than that of a previously reported L148S mutation. A receptor-ligand binding assay showed the P147L mutation causes a substantial loss of ligand-binding affinity. Molecular dynamics simulations revealed the P147L mutation decreases the contact surface area of the ligand-receptor complex in an expanded ligand-binding pocket. Conclusion: We identified a loss-of-function mutation in KISS1R associated with CHH. Our results demonstrated that the P147L mutation causes a severe phenotype and functional impairment resulting from the loss of ligand-binding affinity due to an expanded ligand-binding pocket.
-
Ghrelin does not influence cancer progression in a lung adenocarcinoma cell line Reviewed
Tsubouchi H, Onomura H, Saito Y, Yanagi S, Miura A, Matsuo A, Matsumoto N, Nakazato M
Endocrine Journal 64 ( Suppl. ) S41 - S46 2017.6
Language:English Publishing type:Research paper (scientific journal) Publisher:Endocrine Journal
© 2017 The Japan Endocrine Society. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHSR), is produced in the human stomach. Although ghrelin has therapeutic potential for cancer cachexia, ghrelin treatment may have a concern about accelerating cancer progression. Here, using the human lung adenocarcinoma cell line HLC-1, we investigated the effects of ghrelin on molecular mechanisms linked to cancer progression, including cell viability, proliferation, resistance to apoptosis, and mitochondrial activity. Both types of mouse alveolar epithelial cells (types I and II) expressed the GHSR, as did the human normal airway cell lines BEAS-2B and HLC-1. Treatment with ghrelin (10−2, 10−1, 1, 10 μM) did not affect cell viability or proliferation. Pretreatment of HLC-1 cells with ghrelin (10 μM) did not affect resistance to paclitaxel-induced apoptosis. The parameters of mitochondrial respiration, including basal respiration, proton leak, ATP production, maximal respiration, spare respiratory capacity, and non-mitochondrial respiration, of the HLC-1 cells pretreated with or without ghrelin were unchanged. Taken together, ghrelin does not influence cancer progression in lung adenocarcinoma cells.
-
Yanagi S., Tsubouchi H., Miura A., Matsuo A., Matsumoto N., Nakazato M.
International Journal of Molecular Sciences 18 ( 3 ) 2017.2
Language:English Publishing type:Research paper (scientific journal) Publisher:International Journal of Molecular Sciences
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. Pneumonia generates considerable negative impacts on the elderly. Despite the widespread uses of vaccines and appropriate antibiotics, the morbidity and mortality of elderly pneumonia are significantly higher compared to the counterparts of young populations. The definitive mechanisms of high vulnerability in the elderly against pathogen threats are unclear. Age-associated, chronic low-grade inflammation augments the susceptibility and severity of pneumonia in the elderly. Cellular senescence, one of the hallmarks of aging, has its own characteristics, cell growth arrest and senescence-associated secretory phenotype (SASP). These properties are beneficial if the sequence of senescence–clearance–regeneration is transient in manner. However, persisting senescent cell accumulation and excessive SASP might induce sustained low-grade inflammation and disruption of normal tissue microenvironments in aged tissue. Emerging evidence indicates that cellular senescence is a key component in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), which are known to be age-related and increase the risk of pneumonia. In addition to their structural collapses, COPD and IPF might increase the vulnerability to pathogen insults through SASP. Here, we discuss the current advances in understanding of the impacts of cellular senescence in elderly pneumonia and in these chronic lung disorders that heighten the risk of respiratory infections.
DOI: 10.3390/ijms18030503
-
Yanagi S., Tsubouchi H., Miura A., Matsumoto N., Nakazato M.
BioMed Research International 2015 573210 2015
Language:Japanese Publishing type:Research paper (scientific journal) Publisher:BioMed Research International
© 2015 Shigehisa Yanagi et al. Individual alveolar epithelial cells (AECs) collaboratively form a tight barrier between atmosphere and fluid-filled tissue to enable normal gas exchange. The tight junctions of AECs provide intercellular sealing and are integral to the maintenance of the AEC barrier integrity. Disruption and failure of reconstitution of AEC barrier result in catastrophic consequences, leading to alveolar flooding and subsequent devastating fibrotic scarring. Recent evidences reveal that many of the fibrotic lung diseases involve AECs both as a frequent target of injury and as a driver of ongoing pathological processes. Aberrantly activated AECs express most of the growth factors and chemokines responsible for the proliferation, migration, and activation of fibroblasts. Current evidences suggest that AECs may acquire overdrive activation in the initial step of fibrosis by several mechanisms, including abnormal recapitulation of the developmental pathway, defects of the molecules essential for epithelial integrity, and acceleration of aging-related properties. Among these initial triggering events, epithelial Pten, a multiple phosphatase that negatively regulates the PI3K/Akt pathway and is crucial for lung development, is essential for the prevention of alveolar flooding and lung fibrosis through the regulation of AEC barrier integrity after injury. Reestablishment of AEC barrier integrity also involves the deployment of specialized stem/progenitor cells.
DOI: 10.1155/2015/573210
-
Ghrelin relieves cancer cachexia associated with the development of lung adenocarcinoma in mice
Tsubouchi H., Yanagi S., Miura A., Matsumoto N., Kangawa K., Nakazato M.
European Journal of Pharmacology 743 1 - 10 2014.11
Language:Japanese Publishing type:Research paper (scientific journal) Publisher:European Journal of Pharmacology
© 2014 Elsevier B.V. All rights reserved. Cancer cachexia is a multifactorial, critical illness syndrome characterized by an ongoing loss of skeletal muscle and adipose tissue. The reductions in body weight and skeletal muscle mass are important prognostic indicators for cancer patients that are refractory to current therapies. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is produced in the stomach, stimulates food intake and growth hormone secretion, suppresses inflammation, and prevents muscle catabolism. We investigated the pharmacological potential of ghrelin in the treatment of cancer cachexia by using urethane-treated, bronchioalveolar epithelium-specific Pten-deficient mice that developed lung adenocarcinomas. Ghrelin or phosphate-buffered saline was given to mice daily for four weeks beginning at five months after urethane injection, which corresponded to the time point of lung adenocarcinoma formation. Ghrelin inhibited the inductions of C-reactive protein, tumor necrosis factor-α, interleukin-1β, and interleukin-6, mitigated the reduction of food intake and fat mass, and consequently ameliorated body weight loss in the mouse model of lung adenocarcinoma. We also demonstrated that skeletal muscle mass and muscle contraction force in both fast-twitch muscle and slow-twitch muscle were retained in ghrelin-treated mice in conjunction with an upregulation of local insulin-like growth factor 1/Akt signaling. In addition, ghrelin administration reduced the expressions of phosphorylated-p38 mitogen-activated protein kinase, phosphorylated-nuclear factor-kappa B, Forkhead box protein O1, muscle RING-finger protein-1, and F-Box protein 32 in the lysates of skeletal muscle in the tumor-bearing state. Our results indicate that ghrelin administration exerts a protective effect against cancer cachexia by ameliorating skeletal muscle wasting and regulating systemic inflammation.
-
Rikkunshito ameliorates bleomycin-induced acute lung injury in a ghrelin-independent manner
Tsubouchi H., Yanagi S., Miura A., Iizuka S., Mogami S., Yamada C., Hattori T., Nakazato M.
American Journal of Physiology - Lung Cellular and Molecular Physiology 306 ( 3 ) L233 - 45 2014.2
Language:Japanese Publishing type:Research paper (scientific journal) Publisher:American Journal of Physiology - Lung Cellular and Molecular Physiology
Acute lung injury (ALI) is a critical syndrome consisting of acute respiratory failure associated with extensive pulmonary infiltrates. The pathological characterization of ALI includes injuries of alveolar epithelial cells (AECs), alveolar neutrophilic infiltration, and increases in proinflammatory cytokines, which cause destruction of the alveolar capillary barrier and subsequent devastating lung fibrosis. Rikkunshito (RKT), a traditional Japanese herbal medicine, is widely used for the treatment of patients with gastrointestinal symptoms and is known to stimulate ghrelin secretion. The therapeutic effects of RKT on organ inflammation and fibrosis remain unknown. We investigated the pharmacological potential of RKT in the treatment of ALI by using a bleomycin-induced ALI model in mice. RKT or distilled water (DW) was given to mice daily starting 12 h after bleomycin administration. The RKT-treated mice showed a definitively higher survival rate than the DW-treated mice after injury. They also had smaller reductions in body weight and food intake. The amelioration of neutrophil alveolar infiltration, pulmonary vascular permeability, induction of proinflammatory cytokines, activation of the NF-κB pathway, apoptosis of AECs, and subsequent lung fibrosis were notable in the RKT-treated mice. RKT administration increased the plasma ghrelin levels in wild-type mice, and it also mitigated the ALI response in both ghrelin-deficient mice and growth hormone secretagogue receptordeficient mice after lung injury. Our results indicate that RKT administration exerts protective effects against ALI by protecting the AECs and regulating lung inflammation independently of the ghrelin system, and they highlight RKT as a promising therapeutic agent for the management of this intractable disease. © 2014 the American Physiological Society.
-
Tsubouchi H., Yanagi S., Miura A., Mogami S., Yamada C., Iizuka S., Hattori T., Nakazato M.
Nutrition Research 34 ( 10 ) 876 - 885 2014
Language:Japanese Publishing type:Research paper (scientific journal) Publisher:Nutrition Research
© 2014 Elsevier Inc. Cachexia is a frequent complication in patients with respiratory failure, such as lung fibrosis, and it is a determining factor for functional capacity, health status, and mortality. Reductions in body weight and skeletal muscle mass are key features of cachexia that are resistant to current therapies. Rikkunshito (RKT), a traditional Japanese herbal medicine, is widely used for the treatment for patients with gastrointestinal symptoms and known to stimulate ghrelin secretion. By using bleomycin (BLM)-induced lung fibrosis mice in this study, we tested our hypothesis that RKT administration could ameliorate pulmonary cachexia. After BLM administration, mice were provided with either RKT or distilled water on a daily basis. Compared with the BLM-injected mice, the RKT-treated mice had smaller reductions of food intake and body weight. Skeletal muscle weights were retained in the RKT-treated mice, in conjunction with reduced expressions of MuRF-1 and atrogin-1 in the lysates of skeletal muscle found in lung fibrosis. Rikkunshito administration restored the plasma concentrations of ghrelin in BLM-injected mice. The anticachectic efficacies of RKT administration in BLM-injected mice were canceled by the concurrent treatment of a ghrelin receptor antagonist. Rikkunshito administration did not decrease the degree of loss of body weight or food intake reduction in either ghrelin-deficient mice or growth hormone secretagogue receptor-deficient mice. Our results indicate that RKT administration exerts protective effects on pulmonary cachexia by ameliorating skeletal muscle wasting and food intake reduction as mediated by the ghrelin system and, thus, highlight RKT as a potential therapeutic agent for the management of lung fibrosis.
-
Pituitary adenylate cyclase-activating polypeptide type 1 receptor (PAC1) gene is suppressed by transglutaminase 2 activation. Reviewed
Miura A, Kambe Y, Inoue K, Tatsukawa H, Kurihara T, Griffin M, Kojima S, Miyata A
The Journal of biological chemistry 288 ( 45 ) 32720 - 30 2013.11
Language:Japanese Publishing type:Research paper (scientific journal)
-
Regulatory mechanism of PAC1 gene expression via Sp1 by nerve growth factor in PC12 cells. Reviewed
Miura A, Odahara N, Tominaga A, Inoue K, Kambe Y, Kurihara T, Miyata A
FEBS letters 586 ( 12 ) 1731 - 5 2012.6
Language:Japanese Publishing type:Research paper (scientific journal)