NISHIYAMA Koichi

写真a

Affiliation

Faculty of Medicine School of Medicine Department of Medical Sciences, Vascular and cellular dynamics

Title

Professor

Laboratory Address

5200 Kihara, Kiyotake-cho, Miyazaki-city, Miyazaki 889-1692

Laboratory Phone number

+81-985-85-0985

Contact information

Contact information

Homepage

https://kumamoto-ircms-nishiyama.jp/en/

External Link

Related SDGs


Degree 【 display / non-display

  • MD, PhD ( 2006.2   Kumamoto University )

Research Interests 【 display / non-display

  • Angiogenesis

  • Live imaging

  • vascular basement membrane

  • 微小血管ネットワーク

  • Vascular endothelial cell

  • Blood flow

  • Mathematical model

  • Quantitative analysis

  • Mechanical stimuli

  • pericyte

Research Areas 【 display / non-display

  • Life Science / Pathological biochemistry

  • Life Science / Biophysics

  • Life Science / Biomedical engineering

  • Life Science / Cell biology

  • Life Science / Cardiology

display all >>

Education 【 display / non-display

  • Kumamoto University   Faculty of Medicine

    - 1992.4

Campus Career 【 display / non-display

  • University of Miyazaki   Faculty of Medicine   School of Medicine   Department of Medical Sciences, Vascular and cellular dynamics   Professor

    2021.06 - Now

  • University of Miyazaki   Faculty of Medicine   School of Medicine   Function control study course tumor biochemistry field   Professor

    2021.04 - 2021.05

External Career 【 display / non-display

  • Kumamoto University   Lecturer

    2014.4 - 2016.3

  • Kumamoto University   International Research Center for Medical Sciences   Chief Researcher

    2014 - 2021.3

  • The University of Tokyo   Graduate School of Medicine   Assistant Professor

    2006.4 - 2014.3

  • The University of Tokyo   Graduate School of Medicine   Researcher

    2005.4 - 2006.3

Professional Memberships 【 display / non-display

  • 日本発生生物学会

  • 日本血管生物医学会

  • 日本癌学会

  • 日本生化学会

  • 日本生体医工学会

display all >>

 

Papers 【 display / non-display

display all >>

MISC 【 display / non-display

  • 血流に起因する内腔圧による創傷治癒過程の血管新生の新たな制御機構

    福原茂朋, 弓削進弥, 西山功一, 有馬勇一郎, 花田保之, 花田三四郎, 石井智裕, 若山勇紀, 辻田和也, 横川隆司, 三浦岳, 望月直樹

    日本生化学会大会(Web)   93rd   2020

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)  

    J-GLOBAL

  • 血管新生における血流による物理的力の役割—Roles of the mechanical forces by blood flow in angiogenesis—特集 "かたちづくり"を制御する分子メカニズム ; 形態形成と多細胞動態

    花田 保之, 西山 功一

    医学のあゆみ   290 ( 1 )   42 - 46   2024.7

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher:東京 : 医歯薬出版  

    Other Link: https://ndlsearch.ndl.go.jp/books/R000000004-I033576985

  • 創傷治癒過程の血管新生における内腔圧の新たな役割の解明

    福原茂朋, 弓削進弥, 有馬勇一郎, 花田保之, 花田三四郎, 石井智裕, 若山勇紀, 横川隆司, 三浦岳, 望月直樹, 西山功一

    脈管学(Web)   60 ( supplement )   2020

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

    J-GLOBAL

  • 内腔圧の機械的刺激により制御される創傷治癒での血管新生

    弓削進弥, 西山功一, 有馬勇一郎, 花田保之, 花田三四郎, 石井智裕, 若山勇紀, 辻田和也, 横川隆司, 三浦岳, 望月直樹, 福原茂朋

    日本生化学会大会(Web)   93rd   2020

     More details

    Language:Japanese   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)  

    J-GLOBAL

Grant-in-Aid for Scientific Research 【 display / non-display

  • オルガノイド血管化・灌流によるヒト腎糸球体構造・機能の生体外再現法の開発

    Grant number:24K22384  2024.04 - 2027.03

    独立行政法人日本学術振興会  科学研究費基金  挑戦的研究(萌芽)

      More details

    Authorship:Principal investigator 

  • ペリサイトの血流作用統合による血管新生の生体力学的制御機構の解明

    Grant number:24K03267  2024.04 - 2027.03

    独立行政法人日本学術振興会  科学研究費基金  基盤研究(B)

      More details

    Authorship:Principal investigator 

  • Angiogenic machinery via concerted biomechanical control by blood flow pericyte

    Grant number:19H04446  2021.04 - 2024.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

    Nishiyama Koichi

      More details

    Authorship:Principal investigator 

    Once blood vessel is damaged, it is repaired by angiogenesis. In this study, we recovered that angiogenesis is suppressed by intravascular pressure caused by blood flow. In addition, we uncovered the molecular mechanism of how vascular endothelial cells composing angiogenic sprouts sense vascular wall tension generated by intravascular pressure load to suppress angiogenesis. We further uncovered that perivascular pericytes adjust vascular dilation-caused suppression of angiogenesis and angiogenesis is controlled coordinately by blood flow and pericytes.

  • Reproduction of kidney glomerulus structure and function using human iPS cells-derived organoid and vascular chip

    Grant number:21K19487  2021.04 - 2023.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Research (Exploratory)  Grant-in-Aid for Challenging Research (Exploratory)

      More details

    Authorship:Principal investigator 

  • Cellular and molecular mechanisms underlying inflammation and fibrosis in pericyte-deficient retinai

    Grant number:19H03437  2019.04 - 2022.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    Uemura Akiyoshi

      More details

    Authorship:Coinvestigator(s) 

    By intraperitoneally injecting an anti-PDGFRβ monoclonal antibody (clone APB5) to neonatal mice, we previously established a pericyte-deficient retinopathy model, which reproduced retinal vascular disorders characteristic to diabetic retinopathy. In the present study, we elucidated that mononuclear phagocytes infiltrating around the pericyte-free retinal vessels were derived from both activated microglia and monocyte-derived macrophages. After the onset of retinal detachment caused by the hyperpermeability of the pericyte-free retinal vessels, activated microglia accumulated in the subretinal spaces and induced fibrosis. In these fibrotic tissues, myofibroblasts were derived both pericytes and retinal pigment epithelium cells.

Available Technology 【 display / non-display