SANEYOSHI Hisao

写真a

Affiliation

Faculty of Medicine School of Medicine Department of Medical Sciences, Chemistry

Title

Associate Professor

External Link

Degree 【 display / non-display

  • 博士(理学) ( 2006.3   東京工業大学 )

Research Areas 【 display / non-display

  • Nanotechnology/Materials / Chemistry and chemical methodology of biomolecules  / 核酸化学

  • Nanotechnology/Materials / Synthetic organic chemistry  / 核酸合成化学

 

Papers 【 display / non-display

  • Unusual topological RNA G-quadruplex formed by an RNA duplex: implications for the dimerization of SARS-CoV-2 RNA

    Wang S., Song Y., He Z., Saneyoshi H., Iwakiri R., Xu P., Zhao C., Qu X., Xu Y.

    Chemical Communications   59 ( 85 )   12703 - 12706   2023.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Chemical Communications  

    The infectious disease coronavirus 2019 (SARS-CoV-2) is caused by a virus that has RNA as its genetic material. To understand the detailed structural features of SARS-COV-2 RNA, we probed the RNA structure by NMR. Two RNA sequences form a duplex and self-associate to form a dimeric G-quadruplex. The FrG nucleoside was employed as a 19F sensor to confirm the RNA structure in cells by 19F NMR. A FRET assay further demonstrated that the dimeric G-quadruplex resulted in RNA dimerization in cells. These results provide the basis for the elucidation of SARS-COV-2 RNA function, which provides new insights into developing novel antiviral drugs against SARS-COV-2.

    DOI: 10.1039/d3cc03192f

    Scopus

    PubMed

  • A fish herpesvirus highlights functional diversities among Zα domains related to phase separation induction and A-to-Z conversion. Reviewed International coauthorship

    Diallo MA, Pirotte S, Hu Y, Morvan L, Rakus K, Suárez NM, PoTsang L, Saneyoshi H, Xu Y, Davison AJ, Tompa P, Sussman JL, Vanderplasschen A

    Nucleic acids research   51 ( 2 )   806 - 830   2022.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Nucleic Acids Research  

    Zalpha (Zα) domains bind to left-handed Z-DNA and Z-RNA. The Zα domain protein family includes cellular (ADAR1, ZBP1 and PKZ) and viral (vaccinia virus E3 and cyprinid herpesvirus 3 (CyHV-3) ORF112) proteins. We studied CyHV-3 ORF112, which contains an intrinsically disordered region and a Zα domain. Genome editing of CyHV-3 indicated that the expression of only the Zα domain of ORF112 was sufficient for normal viral replication in cell culture and virulence in carp. In contrast, its deletion was lethal for the virus. These observations revealed the potential of the CyHV-3 model as a unique platform to compare the exchangeability of Zα domains expressed alone in living cells. Attempts to rescue the ORF112 deletion by a broad spectrum of cellular, viral, and artificial Zα domains showed that only those expressing Z-binding activity, the capacity to induce liquid-liquid phase separation (LLPS), and A-to-Z conversion, could rescue viral replication. For the first time, this study reports the ability of some Zα domains to induce LLPS and supports the biological relevance of dsRNA A-to-Z conversion mediated by Zα domains. This study expands the functional diversity of Zα domains and stimulates new hypotheses concerning the mechanisms of action of proteins containing Zα domains.

    DOI: 10.1093/nar/gkac761

    Scopus

    PubMed

  • A Bioreductive Protecting Group for RNA Synthesis. Reviewed International journal

    Saneyoshi H, Nakamura K, Terasawa K, Ono A

    Current protocols   1 ( 9 )   e240   2021.9

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    This protocol describes a method for the preparation of ribonucleoside phosphoramidite bearing a bioreductive protecting group on the 2'-OH group and its application in the synthesis of bioreduction-responsive oligonucleotides. The protecting group used in this method consists of the modified 4-nitrobenzyl skeleton, which has gem-dimethyl groups at benzylic positions to enable deprotection under physiological conditions. Applying the synthesized ribonucleoside phosphoramidite to solid-phase synthesis of oligonucleotides, a 2'-O-protected oligonucleotide was obtained without any undesirable cleavages under standard oligonucleotide synthesis conditions. The 2'-O-protected oligonucleotide was then treated with a combination of nitroreductase (Escherichia coli) and NADH as a bioreduction system for cleavage of the 2'-O-protecting group. After reduction of the nitro group, the protecting group was deprotected in a time-dependent manner. Thus, this protection technology is a potential new tool for production of reduction-responsive RNA-based materials that can be used in life and medical sciences. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of ribonucleoside phosphoramidite bearing a bioreductive protecting group Basic Protocol 2: Synthesis of 2'-O-protected oligonucleotides and their deprotection properties under bioreduction.

    DOI: 10.1002/cpz1.240

    PubMed

    researchmap

  • Design and Synthesis of Protecting Groups for Pro-oligo Type Nucleic Acid-based Drugs Reviewed

    Hisao Saneyoshi, Akira Ono

    JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY JAPAN   78 ( 9 )   886 - 893   2020.9

     More details

    Authorship:Lead author, Corresponding author   Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:SOC SYNTHETIC ORGANIC CHEM JPN  

    Oligonucleotide-based therapeutics, such as antisense oligonucleotides and small interfering RNAs (siRNAs), are fast emerging as the next generation of chemotherapeutics. However, a major issue for oligonucleotide-based therapeutics involves effective intracellular delivery of the active molecules into the cells. Several methods such as lipid nanoparticle encapsulation and conjugation of functional molecules have been reported. As an alternative approach, the use of pro-oligonucleotides (pro-oligos) offers several advantages, including improved enzymatic stability, thereby avoiding the need for transfection reagents for the delivery of oligonucleotides into cells. We have developed several bio-labile protecting groups for the pro-oligos. This article describes the design and synthesis of bio-labile protecting groups and their application to pro-oligo type molecules for the development of oligonucleotide therapeutics.

    DOI: 10.5059/yukigoseikyokaishi.78.886

    Web of Science

    researchmap

  • Development of Bioreduction Labile Protecting Groups for the 2 '-Hydroxyl Group of RNA Reviewed

    Hisao Saneyoshi, Kodai Nakamura, Kazuma Terasawa, Akira Ono

    ORGANIC LETTERS   22 ( 15 )   6006 - 6009   2020.8

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1021/acs.orglett.0c02086

    Web of Science

    PubMed

    researchmap

display all >>

MISC 【 display / non-display

  • 新しい抗ウイルス薬の設計を目指して 非酵素的なヌクレオシド5′-モノリン酸への変換

    實吉 尚郎

    化学   75 ( 12 )   63   2020.12

     More details

    Authorship:Lead author, Corresponding author   Language:Japanese   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)  

    researchmap

Grant-in-Aid for Scientific Research 【 display / non-display

  • がん細胞選択的な細胞死を誘導する合成核酸の開発

    Grant number:22K05319  2022.04 - 2025.03

    独立行政法人日本学術振興会  科学研究費助成事業   基盤研究(C)

    實吉 尚郎

      More details

    Authorship:Principal investigator 

  • Synthesis and characterization of metallo-DNA nanowire with infinite, uninterrupted one-dimensional metal ions array

    Grant number:17H03033  2017.04 - 2021.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator 

    researchmap

  • 細胞膜透過能を有する合成核酸の開発

    Grant number:17K01966  2017.04 - 2020.03

    日本学術振興会  科学研究費助成事業   基盤研究(C)

    實吉 尚郎

      More details

    Authorship:Principal investigator 

    本研究は、細胞膜透過能を有する合成核酸の開発を目指すものである。すなわち、核酸分子自体に細胞膜透過性を有機化学的に付与し、細胞内導入を劇的に簡便にする。細胞膜透過後、適切なトリガー(細胞内環境)によって保護基が除去され活性を示す合成核酸の創製を目指している。本年度は、昨年度に見出した保護基をモデル核酸医薬のプロドラッグ化へ応用した。得られたモデル分子の細胞内部での機能を検討した。細胞内への導入は、合成核酸を細胞へ直接添加する方法と導入剤(トランスフェクション試薬)を用いる一般的な方法を用いた。遺伝子の発現抑制を指標に、細胞内でどの程度機能しているかを評価した。導入剤を用いた場合、プロドラッグ型核酸は、親化合物(保護基が脱保護されている)と比較して高い活性が観測された。保護基の導入により細胞内での安定性が向上したためと推測している。直接添加の場合では、導入剤を使用した場合と比較してやや活性が低下した。親化合物と比較すると、より高い活性が観測された。これらの結果より、保護基を結合した効果を確認することができた。今後は、インキュベート時間、保護基の導入数や導入位置を最適化し、直接添加で機能する合成核酸を目指していきたい。

    researchmap