Papers - THI THI ZIN
-
Video-based Automatic Cattle Identification System Reviewed International journal
Su Larb Mon, Thi Thi Zin, Pyke Tin, I. Kobayashi
GCCE 2022 - 2022 IEEE 11th Global Conference on Consumer Electronics 490 - 491 2022.10
Authorship:Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:GCCE 2022 - 2022 IEEE 11th Global Conference on Consumer Electronics
In this paper, we propose a method to identify the cattle by using video sequences. In order to do so, we first collect 360-degree top-view video sequences to form dataset. The proposed system is composed of two parts: cattle detection and cattle identification. In the detection process, we utilize YOLOv5(Y ou Only Look Once) model to detect the cattle region in the lane. In this stage, cattle's location and region information are extracted and the cropped images of detected cattle regions are saved for the next stage. We then apply Convolutional Neural Network model (VGG16) to extract the features which will be used to identify individual cattle. For the classification, the proposed system used two supervised machine learning methods, Random Forest and SVM (Support Vector Machine). The accuracy of Random Forest is 98.5% and the accuracy of SVM is 99.6%. After comparing the accuracy rate of two methods, SVM get the better accuracy result. The proposed system achieved the accuracy of over 90% for both cattle detection and identification.
-
Cow Lameness Detection Using Depth Image Analysis Reviewed International journal
San Chain Tun, Thi Thi Zin, Pyke Tin, I. Kobayashi
GCCE 2022 - 2022 IEEE 11th Global Conference on Consumer Electronics 492 - 493 2022.10
Authorship:Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:GCCE 2022 - 2022 IEEE 11th Global Conference on Consumer Electronics
In this paper, we introduce to detect cow lameness by using a depth video camera from the top view position. To classify cow lameness, we first extract the sequences of depth value of the cow body region and the maximum value of the back cow area. Then, we will find the average from the maximum height values of the cow backbone area. By using the average values as a feature vector, we classify the cow lameness with the aid of the Support Vector Machine (SVM). To confirm, we perform some experiments by using depth camera images on a real-life dairy farm. The experimental result shows that our proposed method is promising.
-
Color Space Conversion Technique for Cattle Region Extraction with Application to Estrus Detection Reviewed International journal
Y. Hashimoto, H. Hama, Thi Thi Zin
ICIC Express Letters 16 ( 10 ) 1095 - 1100 2022.10
Authorship:Last author Language:English Publishing type:Research paper (scientific journal) Publisher:ICIC Express Letters
In modern dairy and beef farming with no exception in Japanese livestock industry, an accurate and timely estrus (heat) detection is an important and key factor in efficient and profitable reproductive management performance of cattle herd. Failure in heat detection is costly to the producer and it is considered the critical component of reproductive management. Among many estrus behaviors, visual postures of an individual cow can be successfully recognized and utilized for heat detection. In this aspect, to achieve precise identification and to obtain individual cattle information, extracting cattle region from its background is the fundamental and important step. In general, the inter-frame difference and the background subtraction are widely known as methods to detect moving objects in video images. However, these conventional methods do not work well in Japanese black cattle environments, due to their slow movements. At the same time, since the skin is similar to soil in color, region extraction is not so easy, even if background subtraction is used. Therefore, in this paper, we propose a new method for extracting cattle regions using color space conversion. The proposed method is able to automatically extract cattle regions and tracked cattle from change of the gravity center of the extracted cattle regions. Experimental results show that our approach is effective and promising with high accuracy.
-
HMM-Based Action Recognition System for Elderly Healthcare by Colorizing Depth Map Reviewed International journal
Ye Htet, Thi Thi Zin, Pyke Tin, H. Tamura, K. Kondo, E. Chosa
International Journal of Environmental Research and Public Health 19 ( 19 ) 2022.10
Authorship:Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:International Journal of Environmental Research and Public Health
Addressing the problems facing the elderly, whether living independently or in managed care facilities, is considered one of the most important applications for action recognition research. However, existing systems are not ready for automation, or for effective use in continuous operation. Therefore, we have developed theoretical and practical foundations for a new real-time action recognition system. This system is based on Hidden Markov Model (HMM) along with colorizing depth maps. The use of depth cameras provides privacy protection. Colorizing depth images in the hue color space enables compressing and visualizing depth data, and detecting persons. The specific detector used for person detection is You Look Only Once (YOLOv5). Appearance and motion features are extracted from depth map sequences and are represented with a Histogram of Oriented Gradients (HOG). These HOG feature vectors are transformed as the observation sequences and then fed into the HMM. Finally, the Viterbi Algorithm is applied to recognize the sequential actions. This system has been tested on real-world data featuring three participants in a care center. We tried out three combinations of HMM with classification algorithms and found that a fusion with Support Vector Machine (SVM) had the best average results, achieving an accuracy rate (84.04%).
-
A Special Type of Markov Branching Process Model for the Novel Coronavirus (Covid-19) Outbreak Reviewed International journal
Thi Thi Zin, Pyke Tin, H. Hama
International Journal of Innovative Computing, Information and Control 18 ( 4 ) 1339 - 1346 2022.8
Authorship:Lead author, Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:International Journal of Innovative Computing, Information and Control
Mathematical modeling has been an important tool to estimate key factors of the transmission and investigate the dynamical system of evolutionary nature in epidemics. More precisely, the outbreaks of the virus or epidemiology is generally considered as an application of branching process. Therefore, in this paper, we propose a special type of Markov branching process model to examine and explore some problems of the novel Coronavirus (COVID-19) infectious disease with the aims of reducing the effective reproduction number of an infection below unity. Since the COVID-19 has been recognized as a global pandemic, we have assessed a big amount of data such as hourly contagious, hospitalized patients, recovered and deaths. However, these data are necessary to be further processed to produce useful information for people and authorities when they make an efficient and optimal decisions. In such a decision-making process, we establish a special type of Gama Markov branching process model which has been successfully applied in other research areas such as queueing and waiting lines problems, stochastic reservoir problems, inventory controls and operation research. Specifically, we develop a three parameter Gama Markov branching process model that is structured in two parts, initial and latter transmission stages, so as to provide a comprehensive view of the virus spread through basic and effective reproduction numbers respectively, along with the probability of an outbreak sizes and duration. As an illustration, we have performed some simulations based on the daily data appearing on WHO dashboard in order to analyze the first semiannual spread of the ongoing Coronavirus pandemic in the region of Myanmar. The results show that the proposed model can be utilized for the real-life applications.
-
An Intelligent Vision-Based Approach for Work Group Identification through Helmet Detection Reviewed International journal
S. Inoue, I. Hidaka, Thi Thi Zin
ICIC Express Letters, Part B: Applications 13 ( 5 ) 511 - 517 2022.5
Authorship:Last author, Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:ICIC Express Letters, Part B: Applications
Helmets are essential equipment to protect workers from danger during inspection and operation in almost all industries. There is a growing necessity of developing innovative methods to automatically monitor safety and work group identification at industry work sites. With the rapid development of artificial intelligence (AI) based image recognition technologies, computer vision-based inspections have been one of the most important industrial application areas for automation. Thus, in this paper, we propose an intelligent computer vision approach for work group identification through helmet detection by analyzing images collected from 4K camera installed overhead at work site. For this purpose, we attach a marker on the top of the worker’s helmet to detect the helmet and identify the work group. This approach is tested on our data set through simulated experiments and the average accuracy of helmet detection is 92.9%.
-
A Deep Learning Method of Edge-Based Cow Region Detection and Multiple Linear Classification Reviewed International journal
Thi Thi Zin, Saw Zay Maung Maung, Pyke Tin
ICIC Express Letters, Part B: Applications 13 ( 4 ) 405 - 412 2022.4
Authorship:Lead author, Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:ICIC Express Letters, Part B: Applications
In this paper we propose a deep learning method of cow region detection and multiple linear model for classifying behaviors of pregnant cows prior to the occurrence of calving events. Dairy farm management experts and farmers have been well recognized that video monitoring to an individual cow plays an important and significant role in production and re-production processes. To be specific we can learn through video monitoring cow’s health conditions, body conditions even the occurrences of calving difficulties in times. Moreover, due to the advances in the latest computer vision and image processing algorithms, it is possible to develop a camera system that automatically detects the cow’s conditions at a low cost. The fundamental and foremost important step in the proposed system is to detect and segment the cow regions in the video sequences. After the detection process we performed a multiple linear model to classify some behaviors of the detected cows. In particular we consider four states of cow behaviors such as lying state, transition on state from lying to standing, standing state and transition state of standing to lying which are important in studying dairy cow management systems. In order to confirm the validity of our proposed method some experiments are carried out by establishing the video monitoring cameras at the maternity pens of a large dairy farm in Japan. The experimental results show that the proposed method gives an impression of promising with high accuracy.
-
Individual Identification of Cow Using Image Processing Techniques Reviewed
Y. Kawagoe, Thi Thi Zin, I. Kobayashi
2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech) 570 - 571 2022.3
Authorship:Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:LifeTech 2022 - 2022 IEEE 4th Global Conference on Life Sciences and Technologies
Cow identification has become important in recent years due to outbreaks of diseases such as bovine spongiform encephalopathy. Conventional identification methods available are not efficient, affordable, non-invasive, and cost- effective. Among them, some methods are based on biological markers, such as muzzle point matching and facial recognition. Facial images are the most common biometric characteristics used by humans to identify individuals, and they have received much attention. In this study, we used RGB camera to identify individual cow by their faces and confirmed the effectiveness of this method.
-
Action Recognition System for Senior Citizens Using Depth Image Colorization Reviewed
Ye Htet, Thi Thi Zin, H. Tamura, K. Kondo, E. Chosa
2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech) 494 - 495 2022.3
Authorship:Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:LifeTech 2022 - 2022 IEEE 4th Global Conference on Life Sciences and Technologies
This paper describes about the system which can be used at the care center for the purpose of elderly action recognition using depth camera. The depth image colorization is used for compression, visualization, and person detection process. The YOLOv5 (You Only Look Once) algorithm is used as object detector. The space-time features are extracted from depth sequences and they are recognized by linear SVM (Support Vector Machine) classifier. The random image sequences are generated for testing to recognize six actions. The results show that this system can detect the various actions with the average of 92% accuracy for different durations.
-
An Intelligent Method for Detecting Lameness in Modern Dairy Industry Reviewed
Thi Thi Zin, Moe Zet Pwint, Su Myat Noe, I. Kobayashi
2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech) 564 - 565 2022.3
Authorship:Lead author, Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:LifeTech 2022 - 2022 IEEE 4th Global Conference on Life Sciences and Technologies
Lameness is one of the major welfare concerns in the modern dairy industry. In addition, lameness makes severe health and economic problems causing losses in milk production. Although there has a sizable amount of methods, it remains some worthwhile open problems. Therefore, in this paper, we propose an intelligent method for detecting the lameness of dairy cow by establishing a visual monitoring system on the laneways after milking process. We employ a technique of Mask-RCNN for cow region extraction and utilize features based on head bob patterns. Our real-life experimental results show that the proposed method has detection accuracy of 95.5% on cow's region extraction and can classify 80% of the lameness levels correctly.
-
A Deep Learning-based solution to Cattle Region Extraction for Lameness Detection Reviewed
Su Myat Noe, Thi Thi Zin, Pyke Tin, I. Kobayashi
2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech) 572 - 573 2022.3
Authorship:Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:LifeTech 2022 - 2022 IEEE 4th Global Conference on Life Sciences and Technologies
In precision livestock farming, lameness detection in cattle is particularly important for breeding management. The accurate detection of lameness is crucial for delivering effective and economical treatment and for preventing future diseases. The noticeable sign of lameness is that their speed of walking, arching their backs and drop their heads during walking. Here, we emphasis on lameness of dairy cattle by implementing the intelligent visual perception system on the laneways after milking process. Employing a deep learning technique of Mask-RCNN for cattle region detection and identification. The novelty of this work noticeably implies that deep learning instance segmentation could be effectively employed as a cattle region extraction from complex background prior to using identification and tracking.
-
A Study on Automatic Individual Identification of Wild Horses Reviewed
K. Shiiya, R. Yamada, Thi Thi Zin, I. Kobayashi
2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech) 492 - 493 2022.3
Language:English Publishing type:Research paper (international conference proceedings) Publisher:LifeTech 2022 - 2022 IEEE 4th Global Conference on Life Sciences and Technologies
Wild horses called "Misaki-uma"are inhabited Cape Toi in the southern part of Miyazaki Prefecture in Japan. Although wild horse, it needs health care. It is a difficult task for aging management association members to monitor the vast habitat range of horses and to identify individual during routine management. In addition, the current methods of individual identification because of contact with horses or to requiring specialized knowledge, ordinary people cannot perform it. In this paper we propose a method for automatic individual identification of wild horses without contact using an RGB camera.
-
A Study on Worker Tracking Using Camera to Improve Work Efficiency in Factories Reviewed
I. Hidaka, S. Inoue, Thi Thi Zin
2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech) 568 - 569 2022.3
Authorship:Last author, Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:LifeTech 2022 - 2022 IEEE 4th Global Conference on Life Sciences and Technologies
The population of Japan is declining every year. As the population declines, the number of employees in enterprises also decreases, and one of the issues for small and medium-sized enterprises is the decline in productivity due to a shortage of employees. It is necessary to improve work efficiency to compensate for the shortage of employees and the resulting decrease in productivity. If changes in the work process and unnecessary movements in the work process can be eliminated, it will lead to shortening of work time and improvement of work efficiency. In this paper, to improve work efficiency for factories, we aim to track the workers in the factory using a camera and show the trajectory of works.
-
Cho Cho Mar, Thi Thi Zin, I. Kobayashi, Y. Horii
2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech) 566 - 567 2022.3
Authorship:Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:LifeTech 2022 - 2022 IEEE 4th Global Conference on Life Sciences and Technologies
Cow detection and tracking system plays an important role in cattle farming and diary community to reduce expenses and workload. This research presents how the conventional image processing techniques can be combined with deep learning concepts to establish cow detection and tracking system. Specifically, we first employ a Hybrid Task Cascade (HTC) instance segmentation network for cow detection. We then built the multiple objects tracking (MOT) algorithm utilizing location and appearance cues (color and CNN features) to carry out cow tracking process. To leverage the robustness of the system, we also considered the recent features from the previous tracked cow.
-
Dairy Cattle Detection in Loose Housing Calving Pen by Using Semantic Segmentation Networks Reviewed International journal
Swe Zar Maw, Thi Thi Zin, Pyke Tin
ICIC Express Letters, Part B: Applications 13 ( 3 ) 279 - 286 2022.3
Language:English Publishing type:Research paper (scientific journal) Publisher:ICIC Express Letters, Part B: Applications
When it comes to controlling a cattle farm, being able to accurately forecast when calving will happen can be quite beneficial because it allows employees to assess whether or not assistance is required. If such help is not provided when it is required, the calving process may be prolonged, severely impacting both the mother cow and the calf ’s health. Multiple diseases may result from such a delay. During the production cycle, one of the most crucial events for cows is calving. An accurate video-monitoring technique for cows can spot abnormalities or health issues early, allowing for prompt and effective human interference. To make this surveillance automated, a crucial task is to detect the dairy cattle. For this purpose, in this research, we have proposed an effective semantic segmentation network for segmenting the cow from the 360-degree surveillance camera. The proposed network is a modified version of the U-Net architecture. An additional mod-ule is added in the U-Net architecture which is named as Convolutional Long Short-Term Memory (ConvLSTM) block. The ConvLSTM block allows for effective feature sharing between the less dense layers and denser layers. Experiments with our suggested method were carried out at a big dairy farm in Japan’s Oita Prefecture. The suggested method’s experimental findings demonstrate that it holds promise in real-world applications.
-
Automatic Detection and Tracking of Mounting Behavior in Cattle Using a Deep Learning-Based Instance Segmentation Model Reviewed International coauthorship International journal
Su Myat Noe, Thi Thi Zin, Pyke tin, I. Kobayashi
International Journal of Innovative Computing, Information and Control 18 ( 1 ) 211 - 220 2022.2
Authorship:Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:International Journal of Innovative Computing, Information and Control
In precision livestock farming, estrus detection in cattle is particularly im-portant for cattle breeding management. With accurate estrus detection, artificial in-semination can be administered, which proportionally affects the productivity of livestock farms. Most estrus behaviors can be successfully detected by recognizing the mating postures of cattle. Therefore, in this paper, we propose an estrus detection approach that tracks and identifies cattle mating postures individually based on video inputs. To achieve precise identification and to obtain individual cattle information, segmenting each cattle from its background is a vital step. To solve pixel-level segmentation masks for the cattle in an outer ranch environment, an instance segmentation approach based on a Mask R-CNN deep learning framework is also proposed. In this paper, individual cattle segmentation for detecting the mounting behaviors is carried out first. This is followed by a lightweight tracking algorithm as a post-processing step which is our study innovation. The training data were collected by installing surveillance cameras at a livestock farm, and for the testing data, various datasets from different camera placements were used. The proposed approach achieved 95.5% detection accuracy in identifying the estrus be-haviors of cattle.
-
A Stochastic Modeling Procedure for Predicting the Time of Calving in Cattle Reviewed International journal
Thi Thi Zin, K. Sumi, Pann Thinzar Seint, Pyke Tin, I. Kobayashi, Y. Horii
ICIC Express Letters, Part B: Applications 13 ( 1 ) 49 - 56 2022.1
Authorship:Lead author, Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:ICIC Express Letters, Part B: Applications
In this paper we introduce a stochastic modeling technique for predicting time to the occurrence of calving events in cattle. Specifically we establish an application procedure of Wald’s fundamental identity in sequential analysis to predict the time to dairy cow calving as accurately as possible. We have well recognized that Wald’s identity is a fairly handy tool for studying the properties of random walks arising in queueing and dam theories and many other stochastics processes. The identity enables us to obtain ab-sorption probabilities of random walks with one or more barriers which can be interpreted as the occurrence of a calving event in cattle. In order to investigate the proposed problem more insight, we consider the activities of a pregnant cow around the calving event as a sequence of random variables forming a random walk. We then derive results for pre-dicted calving times at which an individual cow calving event occurs in a video-monitored maternity barn. For experimentations, two special probability distributions parameterized by using some real-life data are utilized. The outcome results show the proposed method is promising with high accuracy.
-
Image technology based detection of infected shrimp in adverse environments Reviewed International coauthorship International journal
Thi Thi Zin, T. Morimoto, Naraid Suanyuk, T. Itami and Chutima Tantikitti
Songklanakarin Journal of Science and Technology 44 ( 1 ) 112 - 118 2022.1
Authorship:Lead author, Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:Songklanakarin Journal of Science and Technology
In recent years, countries around Japan and especially in Southeast Asia, white spot disease (WSD) is highly infectious and severely damages shrimp aquaculture. At the same time, the various diseases are occurring in shrimp farms. In the early stages of infection, shrimp shows three abnormal behaviors: (1) they appear in the shallow waters of the farm, (2) they do not move and do not eat even when feeding, and (3) they suddenly stop moving. Currently, infected shrimps are found by visual inspection, which places a burden on the farmers and delays the discovery. Therefore, in this paper, we proposed a system for detecting infected shrimp by using image processing technology in order to eliminate the delay of discovery and reduce the burden of farmers. According to our experimental results, the proposed system has 95% precision, 100% recall rate and an accuracy of 96.4% by using hold-out evaluation method.
-
An absorbing markov chain model to predict dairy cow calving time Reviewed International journal
Swe Zar Maw, Thi Thi Zin, Pyke Tin, I. Kobayashi, Y. Horii
Sensors 21 ( 19 ) 2021.10
Authorship:Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:Sensors
Abnormal behavioral changes in the regular daily mobility routine of a pregnant dairy cow can be an indicator or early sign to recognize when a calving event is imminent. Image processing technology and statistical approaches can be effectively used to achieve a more accurate result in predicting the time of calving. We hypothesize that data collected using a 360-degree camera to monitor cows before and during calving can be used to establish the daily activities of individual pregnant cows and to detect changes in their routine. In this study, we develop an augmented Markov chain model to predict calving time and better understand associated behavior. The objective of this study is to determine the feasibility of this calving time prediction system by adapting a simple Markov model for use on a typical dairy cow dataset. This augmented absorbing Markov chain model is based on a behavior embedded transient Markov chain model for characterizing cow behavior patterns during the 48 h before calving and to predict the expected time of calving. In developing the model, we started with an embedded four-state Markov chain model, and then augmented that model by adding calving as both a transient state, and an absorbing state. Then, using this model, we derive (1) the probability of calving at 2 h intervals after a reference point, and (2) the expected time of calving, using their motions between the different transient states. Finally, we present some experimental results for the performance of this model on the dairy farm compared with other machine learning techniques, showing that the proposed method is promising.
DOI: 10.3390/s21196490
-
A Study on Diagnosis of Parkinson's Disease by Walking Video Reviewed International journal
T. Haruyama, Thi Thi Zin, K. Sakai, H. Mochizuki
2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021 758 - 759 2021.10
Authorship:Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021
Parkinson's disease (PD) is a progressive nervous system disorder that accompanied with resting tremor, bradykinesia, muscle rigidity and impaired posture. The diagnosis for gait disturbance in Parkinson's disease is subjective mostly depends on the experience and skills of experts due to lack of quantitative criterion. As a consequence, nonspecialist doctors could easily make wrong assessment for gait disturbance. Therefore, in this paper, we propose a diagnostic method for PD by analyzing the state of walking with the aids of image processing technology. An experiment was conducted using walking videos recording to confirm the effectiveness of the proposed method.