Papers - THI THI ZIN
-
Predicting Calving Time of Dairy Cows by Time Series Model
Tunn Cho Lwin, Thi Thi Zin, Yokota Mitsuhiro
宮崎大学工学部紀要 50 87 - 94 2021.9
Language:English Publishing type:Research paper (scientific journal) Publisher:宮崎大学工学部
Calving time prediction is an important factor in dairy farming. The careful monitoring of cows can help to decrease the loss of calf rates during the calving time; moreover, to know the exact time of birth is crucial to make sure timely assistance. However, direct visual observation is time-wasting, and the continuous presence of observers during calving time may disturb cows. Therefore, in this study, the recording from video cameras and counting the number of standing to lying and lying to standing transitions of 25 cows before 72 hours of calving time are used. The time series approaches namely the exponential distribution probability and autoregressive integrated moving average (ARIMA) model are applied to predict the calving time and the root mean square error (RMSE) is used to check the accuracy and error value of the experiment. By these methods, the calving time is predicted with exact time interval by using
exponential probability. Moreover, the ARIMA model is better accuracies in predicting calving time than autoregressive (AR) and moving average (MA) models. -
Real-time action recognition system for elderly people using stereo depth camera Reviewed International journal
Thi Thi Zin, Ye Htet, Akagi Y., Tamura H., Kondo K., Araki S., Chosa E.
Sensors 21 ( 17 ) 2021.9
Authorship:Lead author, Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:Sensors
Smart technologies are necessary for ambient assisted living (AAL) to help family mem-bers, caregivers, and health-care professionals in providing care for elderly people independently. Among these technologies, the current work is proposed as a computer vision-based solution that can monitor the elderly by recognizing actions using a stereo depth camera. In this work, we intro-duce a system that fuses together feature extraction methods from previous works in a novel combination of action recognition. Using depth frame sequences provided by the depth camera, the system localizes people by extracting different regions of interest (ROI) from UV-disparity maps. As for feature vectors, the spatial-temporal features of two action representation maps (depth motion appearance (DMA) and depth motion history (DMH) with a histogram of oriented gradients (HOG) descriptor) are used in combination with the distance-based features, and fused together with the automatic rounding method for action recognition of continuous long frame sequences. The experimental results are tested using random frame sequences from a dataset that was collected at an elder care center, demonstrating that the proposed system can detect various actions in real-time with reasonable recognition rates, regardless of the length of the image sequences.
DOI: 10.3390/s21175895
-
Framework of cow calving monitoring system using video images Reviewed International journal
K. Sumi, Thi Thi Zin, I. Kobayashi, Y. Horii
Journal of Advances in Information Technology 12 ( 3 ) 240 - 245 2021.8
Authorship:Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:Journal of Advances in Information Technology
In modern dairy farms, calving is a very critical point in the life cycle of productive cows and has played a major role in making farm profits and welfare of cows. In this time, a tremendous number of researchers have been studied the problem of calving mostly to predict the time about to calve and to investigate calving process by using wearable sensors. Like human beings, cows also have environmental pressures by wearing sensors on their bodies sometimes may cause calving difficulties. Thus in this paper, an automatic video based cow monitoring system is proposed to reduce losses of dairy farms caused from calving problems. Specifically, this paper investigates some behaviors of cows to predict time for calving process including cow movements, tail up, stretching the legs, repeating standing and sitting. In doing so, we focus on increasing movement and tail up. Here, the inter-frame difference is used for analyzing the movement and count in every frame. In addition, by extracting the head and tail position the activity of tail up or not will be recognized so that time for calving can be estimated. Finally, the proposed method for calving is confirmed by using self-collected video sequences.
-
Systematic inclusion study on some rare gemstones of the mogok area, mandalay region, myanmar Reviewed International coauthorship International journal
Htin Lynn Aung, Thaire Phyu Win, Thi Thi Zin
ICIC Express Letters, Part B: Applications 12 ( 8 ) 751 - 756 2021.8
Authorship:Last author Language:English Publishing type:Research paper (scientific journal) Publisher:ICIC Express Letters, Part B: Applications
The Mogok area is situated in Mogok Township, Mandalay Region. It is bounded by Latitude 22◦ 52′-23◦ 00′ N and Longitude 96◦ 10′-96◦ 33′ E. The rock sequence of the study area consists of medium to high grade metamorphic rocks; marble, gneiss, and intrusive igneous rocks; Kabaing granite, leucogranite and syenite. It is famous for pres-ence of ruby and sapphire. Exceptionally some rare gemstones also are discovered. The present work is especially intended to explain systematically the inclusions of some rare gemstones from the Mogok area. Liquid feather inclusions present in jeremejevite. Two-phase inclusions occur in morganite and petalite. In petalite, tube-like inclusions also present. Opaque inclusion and solid inclusion occur in rutile and treacle granular inclusion and finger print inclusion observe in sinhalite.
-
Feature Detection and Analysis of Cow Motion Classification for Predicting Calving Time Reviewed International journal
Thi Thi Zin, Saw Zay Maung Maung, Pyke Tin and Y. Horii
International Journal of Biomedical Soft Computing and Human Sciences (IJBSCHS) 26 ( 1 ) 11 - 20 2021.7
Authorship:Lead author, Corresponding author Language:English Publishing type:Research paper (scientific journal)
-
Handwritten character recognition on android for basic education using convolutional neural network Reviewed International journal
Thi Thi Zin, Shin Thant, Moe Zet Pwint, T. Ogino
Electronics (Switzerland) 10 ( 8 ) 2021.4
Authorship:Lead author, Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:Electronics (Switzerland)
An international initiative called Education for All (EFA) aims to create an environment in which everyone in the world can get an education. Especially in developing countries, many children lack access to a quality education. Therefore, we propose an offline self-learning application to learn written English and basic calculation for primary level students. It can also be used as a supplement for teachers to make the learning environment more interactive and interesting. In our proposed system, handwritten characters or words written on tablets were saved as input images. Then, we performed character segmentation by using our proposed character segmentation methods. For the character recognition, the Convolutional Neural Network (CNN) was used for recognizing segmented characters. For building our own dataset, handwritten data were collected from primary level students in developing countries. The network model was trained on a high-end machine to reduce the workload on the Android tablet. Various types of classifiers (digit and special characters, uppercase letters, lowercase letters, etc.) were created in order to reduce the incorrect classification. According to our experimental results, the proposed system achieved 95.6% on the 1000 randomly selected words and 98.7% for each character.
-
Smart irrigation: An intelligent system for growing strawberry plants in different seasons of the year Reviewed International coauthorship International journal
Ye Htet, Htin Kyaw Oo, Thi Thi Zin
ICIC Express Letters, Part B: Applications 12 ( 4 ) 359 - 367 2021.4
Authorship:Last author Language:English Publishing type:Research paper (scientific journal) Publisher:ICIC Express Letters, Part B: Applications
Agriculture productivity is very important for a country’s economy. There-fore, varying the way of cultivating plants could provide more foods than before and thus smart irrigation would be one of the best solutions. Therefore, the proposed system main-ly focused on strawberry plants to produce fruits in all seasons using intelligent systems within the small-scale farm. The system emphasized automatic drip irrigation and environment adjustment system integrated with sensors to control temperature, water, and fertilizers supply. Moreover, leaf analysis using image processing controlled by the Raspberry Pi is implemented for the detection of plant nutrient deficiency symptoms. As for the communication unit to inform the users via sensors, Internet of Things technology is adopted. The experimental results show that the plants bear fruits efficiently throughout the year by using the proposed irrigation system and also the symptoms can be detected in early stages as soon as they appeared on the leaves.
-
Automatic detection of mounting behavior in cattle using semantic segmentation and classification Reviewed
Su Myat Noe, Thi Thi Zin, Pyke Tin, Ikuo Kobayashi
LifeTech 2021 - 2021 IEEE 3rd Global Conference on Life Sciences and Technologies 227 - 228 2021.3
Authorship:Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:LifeTech 2021 - 2021 IEEE 3rd Global Conference on Life Sciences and Technologies
In cattle farming sector, the accurate detection of estrus plays a vital role because incorrect timing for artificial insemination affects the cattle business. The noticeable sign of estrus is the standing heat, where the cattle standing to be mounted by other cows for a couple of seconds. In this paper, we proposed cattle region detection using deep learning semantic segmentation model and automatic detection of mounting behavior with machine learning classification methods. Based on the conducted experiment, the results show that a mean Intersection of Union (IoU) of 98% on the validation set. The pixel-wise accuracy for two classes (cattle and background) was found to be both 98%, respectively. For the classification, the proposed method compares the four supervised machine learning methods which can detect with the accuracy rate of Support Vector Machine, Naïve Bayes, Logistic Regression and Linear Regression are 87%, 96%, 90%, and 80% respectively. Among them, Naïve Bayes algorithm perform the best. The novelty of this work noticeably implies that deep learning semantic segmentation could be effectively employed as a pre-processing step in segmenting the cattle and background prior to using various classification models.
-
Petrochemical characteristics of the granitoid rocks of Northern Myanmar Reviewed
Htin Lynn Aung, Thaire Phyu Win, Thi Thi Zin
LifeTech 2021 - 2021 IEEE 3rd Global Conference on Life Sciences and Technologies 229 - 230 2021.3
Authorship:Last author, Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:LifeTech 2021 - 2021 IEEE 3rd Global Conference on Life Sciences and Technologies
The research area is located on the Mogaung - Kamaing-Hpakant road in Hpakant Township, Kachin State, northern Myanmar. The dominant lithologic units comprise igneous and metamorphic rocks. The present work is mainly intended to establish the petrogenesis of the igneous rocks based on the petrochemical analysis results. The igneous rocks are mainly microgranite and serpentinite. Major element analysis of some rocks was determined by XRF spectrometer and interpreted the genesis of these rock units. On the basis of the petrochemical characteristics, the microgranite of the study area is I-type peraluminous granitoid formed by partial melting of mantle and / or lower crust in the extensional tectonics.
-
Markov chain monte carlo method for the modeling of posture changes prior to calving Reviewed
Thi Thi Zin, Pyke Tin, Pann Thinzar Seint, Yoichiro Horii
LifeTech 2021 - 2021 IEEE 3rd Global Conference on Life Sciences and Technologies 291 - 292 2021.3
Authorship:Lead author, Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:LifeTech 2021 - 2021 IEEE 3rd Global Conference on Life Sciences and Technologies
An accurate and careful analysis of posture changes for a dairy cow prior to calving plays an important role in making calving time prediction. The patterns of activities such as frequent changes in postures of a pregnant cows during the time closer to calving are utilized as indicators to predict the time of calving. In this paper, we introduce Markov Chain Monte Carlo (MCMC) method to generate the patterns of four states activities such lying, transitions from lying to standing, standing itself and transitions from standing to lying based on the monitored cow activity changes data three days prior to calving. The validity of the generated cow activities in posture changes data is compared with the actual collected data in terms of Euclidean and Cosine distance measures. The experimental results show that the method in this paper can be used as a generalized method to generate synthetic data series of dairy cow activities prior to calving.
-
Activity-integrated hidden markov model to predict calving time Reviewed International journal
K. Sumi, Swe Zar Maw, Thi Thi Zin, Pyke Tin, I. Kobayashi, Y. Horii
Animals 11 ( 2 ) 1 - 12 2021.2
Authorship:Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:Animals
Accurately predicting when calving will occur can provide great value in managing a dairy farm since it provides personnel with the ability to determine whether assistance is necessary. Not providing such assistance when necessary could prolong the calving process, negatively affecting the health of both mother cow and calf. Such prolongation could lead to multiple illnesses. Calving is one of the most critical situations for cows during the production cycle. A precise video-monitoring system for cows can provide early detection of difficulties or health problems, and facilitates timely and appropriate human intervention. In this paper, we propose an integrated approach for predicting when calving will occur by combining behavioral activities extracted from recorded video sequences with a Hidden Markov Model. Specifically, two sub-systems comprise our proposed system: (i) Behaviors extraction such as lying, standing, number of changing positions between lying down and standing up, and other significant activities, such as holding up the tail, and turning the head to the side; and, (ii) using an integrated Hidden Markov Model to predict when calving will occur. The experiments using our proposed system were conducted at a large dairy farm in Oita Prefecture in Japan. Experimental results show that the proposed method has promise in practical applications. In particular, we found that the high frequency of posture changes has played a central role in accurately predicting the time of calving.
DOI: 10.3390/ani11020385
-
Consumer behavior analyzer in internet of things (Iot) environments Reviewed
Swe Nwe Nwe Htun, Thi Thi Zin, Pyke Tin
International Journal of Innovative Computing, Information and Control 17 ( 1 ) 345 - 353 2021.2
Language:English Publishing type:Research paper (scientific journal) Publisher:International Journal of Innovative Computing, Information and Control
This paper proposes an analyzer of consumer behavior in Internet of Things (IoT) environments. This analyzer is most useful in predicting the intentions of users during searches, and especially during image searches. Since most technologies are connected on the Internet, search results can be characterized using image-similarity measures. In this paper, information on image similarities is extracted using a Convolutional Neural Network (CNN) in IoT environments. In this proposed consumer behavior analyzer, the similarity measures characterizing the relationships between images are transformed into Markov Chain transition probabilities, and their stationary probabilities are then analyzed to describe the priority order for search results conforming with consumer intentions. In order to confirm the validity of the proposed method, the Yelp public dataset was used. The outcomes using this analyzer are promising, and this analyzer might be instrumental in making further improvements in practical applications of consumer technologies.
-
Image Technology Based Detection of Infected Shrimp in Adverse Environments Reviewed
Thi Thi Zin, Takehiro Morimoto, Naraid Suanyuk, Toshiaki Itami, Chutima Tantikitti
The 1st International Conference on Sustainable Agriculture and Aquaculture: For Well Being and Food Security: Book of Abstracts 115 - 115 2021.1
Language:English Publishing type:Research paper (bulletin of university, research institution)
In recent years, the cultivation of white leg shrimp (Litopenaeus vannamei) has become popular in countries around Japan, especially in Southeast Asia, and at the same time, various diseases have occurred in the farms [1]. In the early stages of infection, shrimp show three abnormal behaviors: (1) they appear in the shallow waters of the farm, (2) they do not move and do not eat even when fed, and (3) they suddenly start moving. Early detection is important step to control this disease because there are no preventive measures. In addition, we are currently visually confirming shrimp that show characteristic of the disease. However, these lead to a burden on the farmers and delay in discovery [2]. Therefore, we propose an image technology based monitoring system for detecting shrimp showing the characteristics of diseases.
-
A study on detecting violence using image processing technology Reviewed
S. Misawa, Thi Thi Zin
ICIC Express Letters, Part B: Applications 12 ( 1 ) 59 - 66 2021.1
Language:English Publishing type:Research paper (scientific journal) Publisher:ICIC Express Letters, Part B: Applications
In recent years, many security cameras have been installed for crime prevention in downtown areas and public facilities. These cameras have greatly contributed to crime prevention and criminal identification. However, the large number of installed cameras is problematic due to difficulties in manually monitoring and detecting violence and crime in real time, as well as in finding specific video footage recording the inci-dents. This paper describes the use of the background difference method in extracting human regions from data obtained using security cameras. In addition, the paper describes a method of detecting violence using features such as speed and moving distance after contact. Using video footage from seven data sets, these methods have been experimentally evaluated, confirming a high detection rate for incidents involving two people side by side.
-
Intelligent monitoring for elder care using vision-based technology Reviewed
Pann Thinzar Seint, Thi Thi Zin, Pyke Tin
International Journal of Innovative Computing, Information and Control 17 ( 3 ) 905 - 918 2021
Language:English Publishing type:Research paper (scientific journal) Publisher:International Journal of Innovative Computing, Information and Control
Nowadays, smart home care systems are being developed in response to various demands, though challenges remain in realizing various required functionalities. Among many considerations used in developing the proposed system, this paper focuses on ways of recording the consumption of medicine and food by elderly people living alone, as well as ways of communicating information to caregivers. Primarily, we used color coding for objects to facilitate their identification and use. Firstly, we propose useful features, not only between the skin surfaces of hands and mouth, but also the contact between body parts and the objects involved. An Eigen value detector is used to overcome the skin occlusion problem. And then, action detection is performed (such as for picking up or grasping medicine, taking medicine, eating, drinking water, and using a towel) by using a combination of the proposed feature and conditional rule-based learning. Secondly, the proposed system uses context awareness for assessing the subject’s actions using statistical analysis. Finally, the entire system is implemented through the user interface of the application platform. Using this system, caregivers can easily see a record of daily activities, provided with contextual information useful in improving the quality of care. Our proposed system is easy to learn and can provide an economical labor-saving solution for caregivers.
-
A Simple Random Walk Model for Dairy Cow Calving Time Prediction Reviewed
Thi Thi Zin, Pyke Tin, Pann Thinzar Seint, K. Sumi, I. Kobayashi, Y. Horii
2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021 756 - 757 2021
Authorship:Lead author, Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021
In this paper, we propose a simple random walk model to predict time of calving event occurs for a pregnant dairy cow. Dairy farmers and experts have well recognized that an accurate calving time prediction is quite important in modern smart dairy farming. To meet these demands, we consider the number of posture changes of a pregnant cow during a few days before the expected dates as a random walk to predict the time at which the calving event occurs. For validation, we show some experimental results by using real life data collected from a large dairy farm in Japan.
-
T. Hayashida, Thi Thi Zin, K. Sakai, H. Mochizuki
2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021 760 - 761 2021
Authorship:Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021
Discrepancy of exam findings at the same patient make it difficult to ascertain chronological change in the disease and the efficacy of the medicine. Quantitative evaluation of severity is important for improving the discrepancy. In this study, we examine the efficacy of quantitative evaluation of tremor when using single camera. Recording the hand movements of tremor with single camera, and the displacement, velocity, and acceleration signals are acquired using the hand shift between two adjacent video frames. Quantitative evaluation of tremor is performed based on features obtained from each signal. According to the validation results, our method using single camera is possible to classify with an accuracy of up to 82.6%.
-
Cattle Region Extraction using Image Processing Technology Reviewed
Y. Motomura, Thi Thi Zin, Y. Horii
2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021 762 - 763 2021
Authorship:Corresponding author Language:English Publishing type:Research paper (international conference proceedings) Publisher:2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021
In recent years, the number of dairy and beef cattle farms has been decreasing, while the number of cattle and the number of cattle per farm have been increasing, so systems for automatically monitoring cattle have been actively introduced. However, most of them are contact type, which causes physical or mental stress to the cows and is costly when the equipment is damaged. Therefore, in this research, we proposed a method for extracting the approximate shape of cattle using a non-contact 360-degree camera to reduce the burden on livestock farmers and cattle, and confirmed its effectiveness through experiments.
-
Imaging tremor quantification for neurological disease diagnosis Reviewed International journal
Y. Mitsui, Thi Thi Zin, N. Ishii, H. Mochizuki
Sensors (Switzerland) 20 ( 22 ) 1 - 14 2020.11
Authorship:Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:Sensors (Switzerland)
In this paper, we introduce a simple method based on image analysis and deep learning that can be used in the objective assessment and measurement of tremors. A tremor is a neurological disorder that causes involuntary and rhythmic movements in a human body part or parts. There are many types of tremors, depending on their amplitude and frequency type. Appropriate treatment is only possible when there is an accurate diagnosis. Thus, a need exists for a technique to analyze tremors. In this paper, we propose a hybrid approach using imaging technology and machine learning techniques for quantification and extraction of the parameters associated with tremors. These extracted parameters are used to classify the tremor for subsequent identification of the disease. In particular, we focus on essential tremor and cerebellar disorders by monitoring the finger–nose–finger test. First of all, test results obtained from both patients and healthy individuals are analyzed using image processing techniques. Next, data were grouped in order to determine classes of typical responses. A machine learning method using a support vector machine is used to perform an unsupervised clustering. Experimental results showed the highest internal evaluation for distribution into three clusters, which could be used to differentiate the responses of healthy subjects, patients with essential tremor and patients with cerebellar disorders.
DOI: 10.3390/s20226684
-
Gemological analysis of some rare gemstones from mogok area, mandalay region Reviewed International coauthorship
Htin Lynn Aung, Thi Thi Zin
ICIC Express Letters, Part B: Applications 11 ( 11 ) 1077 - 1086 2020.11
Authorship:Last author Language:English Publishing type:Research paper (scientific journal) Publisher:ICIC Express Letters, Part B: Applications
Mogok has long been noted as a supplier of various gemstones over the past decades. The principal gemstones are ruby, sapphire and spinel. Nowadays, fabulous rare gemstones from Mogok are being sold in foreign markets. This area is mainly composed of igneous and metamorphic rocks. Exceptionally rare gemstones are also discovered and they are johachidolite, poudretteite, thorite, etc. The fantastic occurrences of rare gemstones provoke attraction and well attention to mineralogists and gemmologists. Most of the rare gemstones in the present research work are studied from gems dealers from Mogok. Other rare samples are recorded and studied in the favor of the gems collectors. The data on primary occurrence of these rare gemstones are still uncertain and further investigation should be required. In the Mogok area, these rare minerals are recovered from alluvial, eluvial, residual deposits along the riverside, hill slope, flat plains and low-lying area. Economically, rare gemstones are highly important for both local and foreign gem markets. Some gemstones are important economically as well as technologically for its composition, such as thorite and beryl, which are used in space and aeronautical purposes. Most of the rare gemstones are valuable for its rarity and collected as museum pieces and collector’s stones. Thus, they are invaluable.